Zipf’s Law, Pareto’s Law, and the Evolution of Top Incomes in the U.S.*

Shuhei Aoki†
Faculty of Economics, Hitotsubashi University

Makoto Nirei‡
Institute of Innovation Research, Hitotsubashi University

February 12, 2015

Abstract

We construct a tractable neoclassical growth model that generates Pareto’s law of income distribution and Zipf’s law of firm size distribution from idiosyncratic, firm-level productivity shocks. CEOs invest in risk-free assets as well as their own firms’ risky stocks, through which their assets and incomes depend on firm-level shocks. Using the model, we evaluate how changes in tax rates can account for the recent evolution of top incomes in the U.S. The model matches the decline in the Pareto exponent of income distribution and the trend of the top 1% income share in the U.S. in recent decades.

JEL Codes: D31, L11, O40

Keywords: income distribution; wealth distribution; Pareto exponent; top income share; firm size distribution; Zipf’s law

*First draft: June 18, 2013. A previous version of this paper was entitled “Pareto Distributions and the Evolution of Top Incomes in the U.S.” We thank Michio Suzuki, Tomoaki Yamada, Kozo Ueda, and Shin-ichi Fukuda for their helpful comments and discussions. This work was supported by JSPS KAKENHI Grant Numbers 23243050,24730238.

†Address: 2-1 Naka, Kunitachi, Tokyo 186-8601, Japan. Phone: +81 (42) 580-8477. Fax: +81 (42) 580-8195. Email: shuhei.aoki@gmail.com.

‡Address: 2-1 Naka, Kunitachi, Tokyo 186-8603, Japan. Phone: +81 (42) 580-8417. Fax: +81 (42) 580-8410. E-mail: nirei@iir.hit-u.ac.jp.
1 Introduction

For the last three decades, there has been a secular trend of concentration of income among the top earners in the U.S. economy. According to Alvaredo et al. (2013), the top 1% income share, the share of the total income accruing to the richest 1% of the population, declined from around 18% to 8% after the 1930s, but the trend reversed during the 1970s. Since then, the income share of the top 1% has grown, and it reached 18% by 2010, on par with the prewar level.

Along with the increasing trend in the top income share, a widening dispersion of income within the top income group has also been observed over the same periods. It is known that a Pareto distribution describes the upper tail of income distribution very well, in what is referred to as Pareto’s law of incomes. When income follows a Pareto distribution with a slope parameter λ, the ratio of the number of people who earn more than x_1 to those who earn more than x_2, for any income levels x_1 and x_2, is $(x_1/x_2)^{-\lambda}$. Thus, parameter λ, which is called the Pareto exponent, is a measure of equality among the rich. The estimated Pareto exponent historically shows a close connection with the top income share. Along with secular increase in the top 1% income share, this exponent declined from 2.5 in 1975 to 1.6 in 2010, implying the widening dispersion of income within the top income group.

The purpose of this study is to develop a tractable dynamic general equilibrium model of income distribution that explains Pareto’s law, and then use the model to analyze the causes of income concentration and dispersion. Among the causes, we pay special attention to decrease in the marginal income tax rate as a driving force of income dispersion among the rich. Piketty and Saez (2003) argue that a cut in top marginal income tax rate is a plausible reason for the recent evolution of top incomes, as compared with other reasons such as skill-biased technical change. Piketty et al. (2011) report that among the OECD countries, the countries that experienced a sharp rise in their top 1% income share are also the ones where the top marginal income tax rate reduced drastically. This study examines how a decrease in the top marginal income
tax rate contributes to income concentration and dispersion.

While our main focus is on income distribution, we require the model to be consistent with firm-side stylized facts. This is because a substantial part of the evolution of top income in recent decades is the result of increases in the income of top CEOs as well as corporate executives and entrepreneurs (Piketty and Saez, 2003, Atkinson et al., 2011, and Bakija et al., 2012). The pay and assets of a CEO strongly depend on firm performance because of the wide use of stock options as a form of CEO compensation (see Frydman and Jenter, 2010 for a survey). In standard neoclassical models, a firm’s performance is determined by its productivity. Therefore, a model of the evolution of top income should be consistent with the stylized facts of firm productivity. One of these facts is Zipf’s law, which states that the firm size distribution generated from firm productivity shocks in standard models (e.g., Luttmer, 2007), follows a special case of a Pareto distribution with exponent $\lambda = 1$. Zipf’s law is closely related to Gibrat’s law, which observes that a firm’s growth rate is independent of its size (see Gabaix, 2009 and Luttmer, 2010).\footnote{Note that as Gabaix (2009) and Luttmer (2010) point out, deviations from Gibrat’s law are reported for young and small firms. However, we exclude these issues from our analysis, because our focus is on the evolution of top earners who manage big firms.} We construct our model in line with these laws.\footnote{Our model is consistent with the fact that firm productivity distribution also follows a Pareto distribution (Mizuno et al., 2012).}

The contribution of this study is summarized as follows. First, we present a parsimonious neoclassical growth model that generates Zipf’s and Gibrat’s laws of firms and Pareto’s law of incomes from idiosyncratic, firm-level productivity shocks. In the model, firm size and value are the result of firm-level productivity shocks. CEOs can invest in their own firms’ risky stocks or in risk-free assets. The dispersion of CEOs’ income is determined by the risk taken with their after-tax portfolio returns. The model is simple enough to allow for analytical derivation of the stationary distribution of firms and income.

Second, using the model, we evaluate how an unanticipated and permanent cut in the top marginal income tax rate affects the evolution of top incomes. To capture the observation that CEO incomes include incentive pays that comove

\[
\lambda = 1
\]
with firm values, we regard the top marginal income tax in the real world as
the tax on risky stocks of CEOs’ own firms in the model, and taxes on equities
in the real world as the tax on risk-free assets in the model. A large tax cut
on risky stocks relative to that on risk-free assets induces CEOs to hold more
risky stocks and affects the diffusion processes and the distribution of their
assets and income. In transitional dynamics, a one-time tax cut leads to slow-
moving evolution of distribution. Our simple model enables us to obtain an
analytical expression for the time-evolution of income distribution. Using this
expression and calibrated parameters, we numerically compute the transition
dynamics of income distribution assuming that the tax cut occurred in 1975.
We show that our model matches the decline in the Pareto exponent of income
distribution and the trend of increasing top income shares observed in the U.S.
in the last three decades.

We also discuss other testable implications of our model. We show that
the model’s predictions on CEO portfolio choice are consistent with several
observed facts on CEOs’ incentive pay. The model is consistent with the
findings of Edmans et al. (2009) that a percentage change in CEOs’ wealth
on a percentage change in firm size is independent of firm size. Moreover, the
model’s prediction is comparable with the long-run trend on a CEO’s wealth–
performance measure constructed from data in Frydman and Saks (2010). We
also argue that our model has the property of a tax cut not quantitatively
changing the output and capital-output ratio of the aggregate economy. This
property is required for the model to be consistent with the stable growth rate
of output and capital-output ratio observed in the postwar U.S.

Although we share the views of Piketty and Saez (2003) and Piketty et al.
(2011) on the importance of a tax cut, there is a difference: in our model, a cut
in the top marginal income tax rate by itself does not affect the allocation and
distribution of income, unlike in their view. Instead, a cut in the top income
tax rate relative to other taxes, such as capital gains and corporate taxes,
affects them, through changes in CEOs’ portfolio choices. The ineffectiveness
of a cut in the top income tax in our model has the commonality with the
well-known property of the “new” explanation of dividend taxation (Sinn,
1991 and McGrattan and Prescott, 2005) that a dividend tax change does not affect investment decisions.

Recently, several studies have built models to understand why income distribution follows a Pareto distribution. There are two types of approaches in the literature. The first explains Pareto’s law of incomes by the assumption that other variables follow certain types of distributions. Gabaix and Landier (2008) take this approach. They construct a model of the CEO’s pay that assumes that firm size distribution follows Zipf’s law and the CEO’s talent follows a certain distribution. Under the settings, they show that the CEO’s pay follows a Pareto distribution. Their model has the advantage of being consistent with the two stylized facts, that is, Zipf’s law of firms and Pareto’s law of incomes. However, their model deals with the case where the Pareto exponent is constant. Jones and Kim (2012) extend the model to be consistent with the recent decline in the Pareto exponent of income distribution in the U.S. As compared to the studies taking this approach, the contribution of our study is to build a model that generates both Zipf’s and Pareto’s laws from the productivity shocks of firms, without assuming particular types of distributions.

The second approach, whose literature dates back to Champernowne (1953) and Wold and Whittle (1957), explains Pareto’s law of incomes by idiosyncratic shocks on incomes or assets. Recent contributions to the literature are Dutta and Michel (1998), which emphasize preference shocks on bequests as the shocks that generate Pareto’s law, and Nirei and Souma (2007), Benhabib et al. (2011 and 2014), and Toda (2014), which emphasize idiosyncratic shocks on the household’s asset returns. These models are partial equilibrium or endowment models and abstract from production. Nirei and Aoki (2014) and

3The approach requires some additional features to prevent the income and wealth distribution from diverging in order to generate Pareto’s law. The overlapping generations setting in Dutta and Michel (1998) and Benhabib et al. (2011 and 2014) and the lower bound on savings in Nirei and Souma (2007), Nirei and Aoki (2014) and Benhabib et al. (2013) are examples of the features that prevent the distribution from diverging.

4In fact, Dutta and Michel (1998) and Toda (2014) construct general equilibrium models with production. However, these models are equivalent to the endowment models, because they set up the models for the wage income and asset returns to be independent of allocation.
Benhabib et al. (2013) extend the framework to standard Bewley models, that is, dynamic general equilibrium models of heterogeneous households with production, and show that idiosyncratic shocks on firms’ productivities generate Pareto’s law of incomes in the environment. Our study follows this approach. As compared with previous studies, we feature a model that explains not only Pareto’s law of incomes but also Zipf’s law of firms, both from the productivity shocks of firms. Previous studies such as Nirei and Aoki (2014) and Benhabib et al. (2013) can explain only one of these laws, because the entrepreneur of a firm possesses all of the firm’s capital and thus the entrepreneur’s wealth becomes proportional to the firm’s size. We resolve this problem by employing the entrepreneur’s portfolio choice model, where every entrepreneur owns a part, not all, of the firm’s residual claim. Moreover, we analyze how the recent tax cut affects the evolution of top incomes.

The closest study to ours is perhaps Kim (2013) and Jones and Kim (2014). Following the latter approach, Kim (2013) builds a neoclassical-type human capital accumulation model with idiosyncratic shocks that generate Pareto’s law of income, and analyzes the impact of the cut in top marginal income tax in recent decades on the Pareto exponent of income distribution. Jones and Kim (2014) extend the human capital model to an endogenous growth setting, incorporating creative destruction. In contrast to their studies, we build a model that also explains Zipf’s law of firms.\footnote{Kim (2013) does not consider the firm-side problem. In Jones and Kim (2014), the entrepreneurs’ income distribution becomes proportional to the firm size distribution because each entrepreneur acquires all of the residual claims of the firm.} In addition, because our mechanism by which a tax cut affects the top income is different from their mechanism, the predictions of the models are also different. For example, in their models, an income tax cut encourages human capital accumulation among the top income earners, resulting in an increase in the level of per capita output in the U.S. in recent decades, as compared with previous periods and other countries such as France. In contrast, in our model, a tax cut does not directly affect capital accumulation.

Finally, our model is also closely related with the general equilibrium mod-
els of firm size distribution that explain Zipf’s law of firms (for a survey, see Luttmer, 2010). The basic mechanism employed in our study to generate Zipf’s law of firms draws on the literature. In comparison to the literature, our firm-side formulation is rather simplified, because our focus is on understanding the evolution of top incomes.

The organization of the paper is as follows. Section 2 sets up a dynamic general equilibrium model. Section 3 discusses the firm-side properties of the model and derives Zipf’s law of firms. Section 4 describes the aggregate dynamics of the model and defines the equilibrium. After defining the equilibrium, Section 5 illustrates how the household asset and income distributions follow a Pareto distribution in the steady state. Section 6 analyzes how a tax cut affects top incomes in our model and compares the results with the data. Finally, in Section 7, we present our concluding remarks.

2 Model

It is well known that the stationary distribution of certain types of stochastic processes follows a Pareto distribution. The purpose of the model presented here is to incorporate these stochastic processes into an otherwise standard general equilibrium model with incomplete markets and replicate Zipf’s law of firms and Pareto’s law of incomes.

In the model, both Zipf’s law of firms as well as Pareto’s law of incomes is generated from the productivity shocks of firms based on the following settings. The key settings that generate Zipf’s law of firms are such that the firm’s productivity is affected by multiplicative idiosyncratic shocks and there is a lower bound for firm size. The key settings that generate Pareto’s law of entrepreneurs’ assets and incomes are such that these assets are affected by multiplicative idiosyncratic shocks generated from the firms’ productivity shocks and each entrepreneur faces a constant probability of termination of the entrepreneurial position. Here, a lower bound or a constant probability of termination is necessary to prevent the distribution from diversifying and to generate the two laws.
In order to generate both Zipf’s law of firms as well as Pareto’s law of incomes simultaneously, we incorporate the entrepreneurs’ portfolio choice into the model, by which each entrepreneur owns a part, not all, of the firm’s residual claim. On the other hand, if each entrepreneur possesses all the capital or residual claims of the firm, the entrepreneurs’ income and wealth distribution becomes proportional to the firm size distribution measured by firm capital. Then, the Pareto exponent of income and wealth distribution is proportional to that of firm size distribution, violating either Zipf’s law of firms or Pareto’s law of incomes.

In the next section, we show how these settings generate the laws.

2.1 Households

There is a continuum of households with a mass L. As in Blanchard (1985), each household is discontinued by a Poisson hazard rate ν, and is replaced by a newborn household that has no bequest. Household participate in a pension program. If a household dies, all of his non-human assets are distributed to living households. The amount a living household gets is the pension premium rate ρ times his financial assets.

Households consist of entrepreneurs and workers. The mass N of households are entrepreneurs and the remaining $L - N$ are workers. An entrepreneur as well as a worker provides one unit of labor and earns a wage income of w_t. Households also get a government transfer, tr_t. Among these households, only entrepreneurs manage firms. An entrepreneur has the benefit of holding the stocks of his firm relatively cheaper, as is explained subsequently. Entrepreneurs leave their firms and become workers with a Poisson hazard rate p_f. Thus, there are two types of workers, namely, workers who were previously entrepreneurs, and workers by birth. We refer to the former as former entrepreneurs and the latter as innate workers.

6Our model does not take into account the bequest motive of households. A justification for this comes from Kaplan and Rauh (2013), who report thus: “Those in the Forbes 400 are less likely to have inherited their wealth or to have grown up wealthy.”

7 We need either a Poisson hazard rate of death or that of quitting the entrepreneur’s
These households maximize the expected discounted log utility

\[\mathbb{E}_t \int_t^\infty \ln c_{i,s} e^{-(\beta + \nu)s} ds, \]

where \(\beta \) is the discount rate, by optimally choosing sequences of consumption \(c_{i,s} \) and an asset portfolio. As the asset portfolio, a worker can hold (i) a risk-free market portfolio \(b_{i,t} \) that consists of the market portfolio of firms' stocks, and (ii) human assets \(h_t \) that consist of wage incomes \(w_t \) and government transfers \(tr_t \). The risk-free market portfolio yields a net return \(r^f_t \) (and pension premium \(\nu \)) with certainty. The human asset is defined by \(h_t = \int_t^\infty (w_u + tr_u) e^{-\int_u^t (\nu + r^f_s) ds} du, \) whose return is

\[(\nu + r^f_t) h_t = (w_t + tr_t) + dh_t/dt.\]

An entrepreneur can hold (i) a risk-free market portfolio \(b_{i,t} \) and (ii) human assets \(h_t \), similar to a worker. In addition, the entrepreneur can also hold (iii) risky stocks of his firm \(s_{i,t} \). Owing to the setup of the model described in the following sections, the risky stocks are affected by uninsurable idiosyncratic shocks, the risk and returns on an entrepreneur's risky stocks are ex ante identical across entrepreneurs, and the expected return on risky stocks exceeds that of the risk-free market portfolio, because the transaction costs and tax rates differ between the two assets. Let \(q_{i,t} \) and \(d_{i,t} \) be the price and dividend of the risky stocks, respectively. Then, the return on the risky stock is described by the following stochastic process:

\[((1 - \tau^e) d_{i,t} dt + dq_{i,t})/q_{i,t} = \mu_{q,t} dt + \sigma_{q,t} dB_{i,t}, \]

where \(\tau^e \) is the tax rate on the risky stock and \(B_{i,t} \) is a Wiener process. Note that we interpret holding risky stocks in the model as a CEO’s incentive scheme to generate Pareto’s law of incomes. We introduce these two types of termination for a purely quantitative reason. Quantitatively, if we do not introduce either one of these two types, the mobility of a household’s asset or income level becomes very slow, or the Pareto exponent of income distribution becomes very low, as compared with the data (see Gabaix et al., 2014 and Jones and Kim, 2014).
in the real world. In numerical analysis, we calibrate tax on risky stocks, \(\tau^e \), by the top marginal tax rate on ordinary income imposed on the CEO’s pay. We discuss the similarity of our formulation of CEO pay with that in previous studies and compare our model’s prediction with the data in Section 6.5.1.

Let \(a_{i,t} = s_{i,t}q_{i,t} + b_{i,t} + h_t \) denote the total asset of a household. (Note that if the household is a worker, \(s_{i,t} = 0 \).) The household’s total asset accumulates according to the following process:

\[
da_{i,t} = (\nu(s_{i,t}q_{i,t} + b_{i,t}) + \mu_{q,t} s_{i,t} q_{i,t} + r^f_t b_{i,t} + (\nu + r^f_t)h_t - c_{i,t})dt \\
+ \sigma_{q,t} s_{i,t} q_{i,t} dB_{i,t} \\
= \mu_{a,t} a_{i,t} dt + \sigma_{a,t} a_{i,t} dB_{i,t}. \tag{1}
\]

Here, \(\mu_{a,t} a_{i,t} = \nu a_{i,t} + \mu_{q,t} x_{i,t} a_{i,t} + r^f_t (1 - x_{i,t}) a_{i,t} - c_{i,t} \), \(\sigma_{a,t} a_{i,t} = \sigma_{q,t} x_{i,t} a_{i,t} \), and \(x_{i,t} \) is the share of \(a_{i,t} \) invested in risky stocks. \(dB_{i,t} \) is a multiplicative shock to the asset accumulation, in that the shock is multiplied by the current asset level \(a_{i,t} \).

The household’s dynamic programming problem is specified as follows:

\[
V^i(a_{i,t}, S_t) = \max_{c_{i,t}, x_{i,t}} \ln c_{i,t} dt + e^{-(\beta + \nu) dt} E_t[V^{i'}(a_{i,t+dt}, S_{t+dt})] \tag{2}
\]

subject to (1), where \(S_t \) is a set of variables that describes the aggregate dynamics of the model (for the definition, see Section 4) and \(V^i \) denotes value functions of household characteristics \(i \). That is, if the household is an entrepreneur, \(i = e \); and if he is a worker, \(i = \ell \) (more specifically, if he is an innate worker, \(i = w \); and if he is a former entrepreneur, \(i = f \)). Note that if the household is an entrepreneur, the household characteristics in the next period, denoted by \(i' \), can be either entrepreneur or worker. If the household is an innate worker or a former entrepreneur, \(i' = i \).

The household problem is a variant of Merton’s dynamic portfolio problem (Merton, 1969, 1971, 1973, Campbell and Viceira, 2002, and Benhabib et al., 2014). It is well known that the solution to the problem under the log utility...
follows the myopic rules,
\[x_{i,t} = \begin{cases} \frac{\mu_{q,t} - r_f^t}{\sigma_{q,t}^2}, & \text{if } i = e, \\ 0, & \text{otherwise,} \end{cases} \]
(3)
\[v_{i,t} = \beta + \nu, \]
(4)
where \(v_{i,t} \) is the consumption–wealth ratio (see Appendix A for derivations) and satisfies the transversality condition
\[\lim_{T \to \infty} e^{-(\beta + \nu)T} E_0 \left[V^i(a_{i,T}, S_T) \right] = 0. \]
(5)

In the model, we assume that entrepreneurs can hold risky stocks of their own firms. We can relax the assumption and allow households to hold risky stocks of firms not managed by them, whose expected returns are as low as that of risk-free assets, \(r_f \), owing to transaction costs and a different tax rate, which are explained in the next section. Then, because the shocks on risky stocks are assumed to be uncorrelated with one another, the optimal portfolio share of another firm’s risky stocks \(x'_{i,t} \) becomes \((r_f^t - r_f^t)/\sigma_{q,t}^2 = 0 \), where \(\sigma_{q,t}^2 \) is the volatility of these risky stocks (see, e.g., Campbell and Viceira, 2002). This implies that the results are unchanged even when the assumption is relaxed.

2.2 Firms and the financial market

A continuum of firms with mass \(N \) produces differentiated goods. As in McGrattan and Prescott (2005), each firm issues shares, and owns and self-finances capital \(k_{j,t} \). As noted above, the entrepreneur of a firm can directly own shares of his firm. Financial intermediaries also own the firm’s shares, and by combining the shares of all of these firms, issue risk-free market portfolios to households. This helps to diversify the firms’ idiosyncratic shocks. The financial intermediaries incur \(\iota \) per dividend \(d_{j,t} \) as transaction costs. We assume that financial intermediaries own the majority shares, or an entrepreneur owns his firm’s shares in the form of preferred stocks without voting rights. Under
the setup, firms maximize expected profits following the interest of financial intermediaries. Then, the market value of a firm becomes the net present value of the after-tax profits discounted by the risk-free rate \(r_f \). We make these assumptions to simplify the analysis.

2.2.1 Financial intermediary’s problem

In this model, returns and risks on risky stocks are ex ante identical across firms and shocks on the risky stocks are uncorrelated with each other. Then, a financial intermediary maximizes residual profit by diversifying the risks on risky stocks and issuing risk-free assets as follows:

\[
\max_{s_{j,t}^f} E_t \left[\int_0^N \left\{ (1 - \tau^f - \iota) d_j,t dt + dq_{j,t} \right\} s_{j,t}^f dj \right] - r_f^t \left(\int_0^N q_{j,t} s_{j,t}^f dj \right),
\]

where \(s_{j,t}^f \) is the shares of firm \(j \) owned by the financial intermediary and \(\tau^f \) is the dividend tax, which is different from the tax rate on risky stocks \(\tau^e \). We interpret \(\tau^f \) in the numerical analysis as a combination of capital gains and corporate income taxes. In Section 6, we account for the evolution of top incomes by the change in the difference between these tax rates. The solution of the problem leads to

\[
r_f^t q_{j,t} dt = E_t[(1 - \tau^f - \iota) d_j,t dt + dq_{j,t}] .
\]

2.2.2 Firm’s problem

There are heterogeneous firms in the economy. The production function of firm \(j \) is

\[
y_{j,t} = z_{j,t} k_{j,t}^{\alpha} \ell_{j,t}^{1-\alpha} .
\]

The productivity of the firm evolves as

\[
dz_{j,t} = \mu z_{j,t} dt + \sigma z_{j,t} dB_{j,t} ,
\]
where $B_{j,t}$ is a Wiener process that is uncorrelated with shocks in other firms. $dB_{j,t}$ is a multiplicative shock to the productivity growth, because the shock is multiplied by its productivity level $z_{j,t}$. Under the formulation, when the firm’s size is proportional to its productivity, as will be shown below, Gibrat’s law of firms holds; that is, the growth rate of the firm is independent of the firm’s size.

In order to derive the property that the firm size distribution follows Zipf’s law, we impose the following assumptions on the minimum level of firm size. Following Rossi-Hansberg and Wright (2007), who construct a model of establishment size dynamics, we assume that there is a minimum level of employment ℓ_{min}, that is,

$$\ell_{j,t} \geq \ell_{\text{min}}.$$

A firm whose optimal employment is less than ℓ_{min} is restructured. More precisely, we define the productivity level z_{min} such that when the firm optimally chooses labor (following (7) below), $\ell_{j,t} = \ell_{\text{min}}$. We assume that the firm whose productivity $z_{j,t}$ is less than z_{min} has to be restructured. For this, the firm buys productivities and accompanying capital from other firms at the market price, in order to increase its own size. Correspondingly, we assume that each firm sells a constant fraction of its capital to the firms undergoing restructuring (in Section 3.2, we discuss how these deals are conducted).

A firm chooses the investment level $d_{k,j,t}$ and employment $\ell_{j,t}$ to maximize profit as follows:

$$r_t q(k_{j,t}, z_{j,t}, S_t)dt = \mathbb{E}_t \left[\max_{d_{k,j,t} \ell_{j,t}} (1 - \tau^f - \iota)d_{j,t}dt + dq(k_{j,t}, z_{j,t}, S_t) \right]. \quad (7)$$

The dividend $d_{j,t}$ consists of

$$d_{j,t}dt = (p_{j,t}y_{j,t} - w_t \ell_{j,t} - \delta k_{j,t}) dt - d_{k,j,t},$$

where $p_{j,t}$ and $y_{j,t}$ are, respectively, the price and quantity of the good produced by the firm, $k_{j,t}$ is the capital, w_t is the wage rate, and δ is the depreciation
By solving the firm’s maximization problem, we obtain the following conditions (see Appendix B for details):

$$\begin{align*}
\text{MPK}_t &\equiv r^f_t + \delta = \frac{\partial p_{j,t} y_{j,t}}{\partial k_{j,t}}, \\
\omega_t &= \frac{\partial p_{j,t} y_{j,t}}{\partial \ell_{j,t}}.
\end{align*}$$

(8)

(9)

Two remarks need to be made about the firm’s problem. First, in the model, the marginal product of capital (MPK) becomes the same among firms, because the stochastic discount factor of those who own diversified bonds is not correlated with the shock of firm j. Second, because taxes in the model are imposed on dividends, as found in the “new view” literature of dividend taxation (Sinn, 1991 and McGrattan and Prescott, 2005), they do not distort MPK.

2.3 Aggregation and market conditions

We now consider the market conditions for the aggregate economy. (Throughout the paper, we use upper-case letters to denote aggregate variables.) Goods produced by a mass N of firms are aggregated according to

$$Y_t = \left(\int_0^N \left(\frac{1}{N} \right)^{\frac{1}{\phi}} y_{j,t} \phi^{-1} dj \right)^{\frac{\phi}{\phi - 1}}, \quad \phi > 1. \quad (10)$$

We assume that the aggregate good Y is produced competitively. Other aggregate variables are simply summed up over households or firms. For example, $C_t = \int_0^L c_{i,t} di$ and $K_t = \int_0^N k_{j,t} dj$.

The market clearing condition for final goods is

$$C_t + \frac{dK_t}{dt} - \delta K_t + \ell \left(1 - \frac{A_{e,t} x_{e,t}}{Q_t} \right) D_t = Y_t,$$

where $A_{e,t}$ is the total assets of entrepreneurs and Q_t is the aggregate financial asset, that is, the sum of risk-free market portfolios and risky stocks. The last
term on the left-hand side of the equation indicates that a part of the final goods is consumed as transaction costs. The labor market clearing condition is

$$\int_0^N \ell_{j,t} d\tau = L.$$ \hfill (11)

The market clearing condition for the shares of firm j is

$$s_{j,t} + s^f_{j,t} = 1,$$

where $s_{j,t}$ is the shares owned by firm j’s entrepreneur according to (3) and $s^f_{j,t}$ is the shares owned by financial intermediaries. We assume that government transfers are adjusted such that tax revenues equal government transfers in each period.

3 Firm-Side Properties

Before we define the equilibrium and solve the model, we review some of the firm-side properties. First, in this model, given r^f_t, the firm-side variables, such as $\ell_{j,t}$, $k_{j,t}$, and $d_{j,t}$, can be obtained as closed-form expressions. These variables can be written as a product of components that are common across firms and the heterogeneous component. Second, the firm’s productivity distribution is obtained independently of other variables. It is a Pareto distribution that establishes Zipf’s law of firms when the minimum employment level ℓ_{min} is sufficiently small.

3.1 Firm-side variables

Employing the firm’s first-order conditions (FOCs), (8) and (9), together with the aggregate condition (10) and the labor market condition (11), the firm’s
variables can be written as follows (for the derivations, see Appendix B):

$$\ell_{j,t} = \bar{\ell}_t z_{j,t}^{\phi-1}, \text{ where } \bar{\ell}_t \equiv \left(\frac{L/N}{\mathbb{E}\{z_{j,t}^{\phi-1}\}} \right), \quad (12)$$

$$p_{j,t} y_{j,t} = \overline{py}_t \ell_{j,t} z_{j,t}^{\phi-1}, \text{ where } \overline{py}_t \equiv \left(\frac{\alpha(\phi - 1)/\phi}{\text{MPK}_t} \right)^{\frac{1}{1-\alpha}} \mathbb{E}\{z_{j,t}^{\phi-1}\}^{\frac{1}{1-\alpha}}, \quad (13)$$

$$k_{j,t} = \bar{k}_t \ell_{j,t} z_{j,t}^{\phi-1}, \text{ where } \bar{k}_t \equiv \left(\frac{\alpha(\phi - 1)/\phi}{\text{MPK}_t} \right)^{\frac{1}{1-\alpha}} \mathbb{E}\{z_{j,t}^{\phi-1}\}^{\frac{1}{1-\alpha}}, \quad (14)$$

$$d_{j,t} dt = \bar{d}_t \ell_{j,t} z_{j,t}^{\phi-1} dt - (\phi - 1)\sigma_z \bar{k}_t \ell_{j,t} z_{j,t}^{\phi-1} dB_{j,t}, \quad (15)$$

where \(\bar{d}_t \equiv (1 - (1 - \alpha)(\phi - 1)/\phi)\overline{py}_t - (\delta + \mu_{k,t}) \bar{k}_t, \)

$$q_{j,t} = \overline{q}_t \ell_{j,t} z_{j,t}^{\phi-1}, \text{ where } \overline{q}_t \equiv (1 - \tau') \bar{d}_t \int_0^\infty \exp\left\{ - \int_0^u (r_s - \mu_{d,s}) ds \right\} du. \quad (16)$$

Note that \(\mathbb{E}\{z_{j,t}^{\phi-1}\} \) is the average of \(z_{j,t}^{\phi-1} \) over the firm size distribution (we will show later that the average exists), and \(\mu_{k,t} \) and \(\mu_{d,t} \) are the expected growth rates of \(k_{j,t} \) and \(d_{j,t} \), respectively.

In the above equations, each of the variables has common components, such as \(\bar{\ell}_t \) and \(\overline{py}_t \) and the heterogeneous component, \(z_{j,t}^{\phi-1} \). Thus, the size distributions of the firm-side variables depend only on the heterogeneous component.

3.2 Restructuring

Before deriving the firm size distribution, we explain how firms that are restructuring buy the assets of other firms. In each small time interval, some firms decrease their productivities from \(t \) and \(t + dt \) to \(z_{j,t+dt} < z_{\text{min}} \) by exogenous shocks. In our model, these firms subsequently have to increase their productivities and sizes by mergers and acquisitions (M&A) through the stock market in the following manner.\(^8\)

\(^8\) We adopt this setting to keep the firm dynamics tractable. A minimum firm size is important for deriving Zipf's law, as discussed in the literature (Gabaix, 2009 and Luttmer,
We assume that if a buyer firm \(b \) pays \(q_{b,t+dt}^{M&A} \) to a seller firm \(s \), a part of the seller firm’s productivity and capital, \((z_{b,t+dt}^{M&A})^{\phi-1} \equiv \frac{q_{b,t+dt}^{M&A}}{(\bar{q}_{t+dt}\ell_{t+dt})} \) and \(k_{b,t+dt}^{M&A} \equiv k_{b,t+dt}\ell_{t+dt}(z_{b,t+dt}^{M&A})^{\phi-1} \), are transferred. Then, the productivity and capital of the buyer firm after M&A increase according to \((z_{after}^{b,t+dt})^{\phi-1} = (z_{before}^{b,t+dt})^{\phi-1} + \phi_1 q_{b,t+dt}^{M&A} + k_{before}^{M&A} \) and \(k_{after}^{b,t+dt} = k_{before}^{b,t+dt} + k_{b,t+dt}^{M&A} \). (We denote the variables before and after M&A as with the superscripts before and after.) Similarly, the seller firm’s productivity and capital decrease according to \((z_{after}^{s,t+dt})^{\phi-1} = (z_{before}^{s,t+dt})^{\phi-1} - \phi_1 q_{j,t+dt}^{M&A} \) and \(k_{after}^{s,t+dt} = k_{before}^{s,t+dt} - k_{b,t+dt}^{M&A} \). Note that then the agents cannot gain excess profits through M&A, because after M&A, the values of the buyer and seller firms change just by \(q_{b,t+dt}^{M&A} \).

Under the setup, on the buyer side, firms whose productivities at \(t+dt \) are less than \(z_{\text{min}} \) buy \(\bar{q}_{t+dt}\ell_{t+dt}(\phi_1 z_{\text{min}}^{\phi-1} - z_{j,t+dt}^{\phi-1}) \) from other firms in order to undergo restructuring. We denote the sum of payments made by the restructured firms as \(Q_{\text{restructuring},t+dt} \).

On the seller side, we assume that at each instant, every firm sells a constant fraction \(m(\phi - 1)dt \) of its value to restructuring firms at the market price \(m(\phi - 1)q_{j,t+dt} \) \((\phi - 1) \) is multiplied as the adjustment term. The total value of the sellouts is

\[m(\phi - 1)dt \int_0^N q_{j,t+dt} dj = N\bar{q}_{t+dt}\ell_{t+dt}\mathbb{E}\left\{ z_{j,t}^{\phi-1} \right\} m(\phi - 1)dt. \]

Because the demand of restructuring firms equates the supply,

\[Q_{\text{restructuring},t+dt} = N\bar{q}_{t+dt}\ell_{t+dt}\mathbb{E}\left\{ z_{j,t}^{\phi-1} \right\} m(\phi - 1)dt. \] (17)

Rearranging this equation and taking the limit as \(dt \) approaches zero from above, we obtain (see Appendix B.3 for details)

\[m = (\lambda - (\phi - 1)) \frac{\sigma_z^2}{4}. \] (18)

2010). Our model of restructuring provides a convenient mechanism by which the minimum size is maintained and \(q_{j,t} \) is proportional to \(z_{j,t}^{\phi-1} \). We lose this relation under, for example, Luttmer’s 2007 setting, in which firms that cannot pay a fixed cost due to low productivity have to exit.
where \(\lambda \) is the Pareto exponent of the firm size distribution, which is pinned down in the next section.

3.3 Firm size distribution

We detrend the firm’s productivity to derive the invariant productivity distribution. Let \(\bar{z}_{j,t} \) be the firm’s productivity level after selling a part of the firm’s assets to restructuring firms, detrended by \(e^{g_z t} \) (\(g_z \) is a constant whose value is determined below). The firm’s detrended productivity growth after a sellout is

\[
\begin{align*}
 d \ln \bar{z}_{j,t} &= \left(\mu_z - g_z - \frac{\sigma_z^2}{2} - m \right) dt + \sigma_z dB_{j,t}.
\end{align*}
\]

The Fokker–Planck equation for the probability density \(f_z(\ln \bar{z}_{j,t}, t) \) of the firm’s productivity is

\[
\begin{align*}
 \frac{\partial f_z(\ln \bar{z}_{j,t}, t)}{\partial t} &= - \left(\mu_z - g_z - \frac{\sigma_z^2}{2} - m \right) \frac{\partial f_z(\ln \bar{z}_{j,t}, t)}{\partial \ln \bar{z}_{j,t}} + \frac{\sigma_z^2}{2} \frac{\partial^2 f_z(\ln \bar{z}_{j,t}, t)}{\partial (\ln \bar{z}_{j,t})^2}.
\end{align*}
\]

In this study, we assume an invariant distribution for firms, that is, \(\partial f_z(\ln \bar{z}_{j,t}, t)/\partial t = 0 \). In the case of an invariant distribution, the Fokker–Planck equation has a solution in exponential form,

\[
\begin{align*}
 f_z(\ln \bar{z}_{j,t}) &= F_0 \exp(-\lambda \ln \bar{z}_{j,t}),
\end{align*}
\]

where the coefficients satisfy

\[
\begin{align*}
 F_0 &= \lambda \bar{z}_{\min}^\lambda, \quad \lambda = -2 \left(\mu_z - g_z - \frac{\sigma_z^2}{2} - m \right) / \sigma_z^2.
\end{align*}
\]

Equation (20) shows that the distribution of \(\ln \bar{z}_{j,t} \) follows an exponential distribution. Through a change of variables, it can also be shown that the distribution of \(\bar{z}_{j,t} \) follows a Pareto distribution whose Pareto exponent is \(\lambda \).

In this model, \(\lambda \) and \(g_z \) are pinned down by exogenous parameters such as \(\ell_{\min} \), \(\mu_z \), and \(\sigma_z \). From the restriction on \(\ell_{\min} \) and (12) (and by employing (23)
below), we obtain the Pareto exponent for $\tilde{z}_{j,t}$ as

$$
\lambda = \frac{1}{1 - \frac{\ell_{\text{min}}}{L/N}} (\phi - 1).
$$

(22)

With this λ, we obtain the rescaling parameter g_z that ensures the existence of the invariant distribution of $\tilde{z}_{j,t}$ from (18) and (21).

Four remarks need to be made on the firm size distribution. First, we obtain a constant rescaled mean $\mathbb{E} \left\{ \tilde{z}_{j,t}^{\phi - 1} \right\}$ for a constant \tilde{z}_{min} as follows:

$$
\mathbb{E} \left\{ \tilde{z}_{j,t}^{\phi - 1} \right\} = \int_{\tilde{z}_{\text{min}}}^{\infty} \tilde{z}^{\phi - 1} f_{\tilde{z}}(\ln \tilde{z}) \frac{\partial \ln \tilde{z}}{\partial \tilde{z}} d\tilde{z} = \frac{F_0\tilde{z}_{\text{min}}^{-(\lambda - (\phi - 1))}}{\lambda - (\phi - 1)}.
$$

(23)

Second, the growth rate of the aggregate output is $g \equiv g_z/(1 - \alpha)$. We can confirm this by detrending and aggregating (13).

Third, Zipf’s law holds for the distribution of firm size, $\ell_{j,t}$ and $y_{j,t}$. This is because the firm size distribution cross-sectionally obeys $\tilde{z}_{j,t}^{\phi - 1}$, whose Pareto exponent is $\lambda/(\phi - 1)$. Equation (22) shows that $\lambda/(\phi - 1) > 1$; if ℓ_{min} is sufficiently small as compared with the average employment level L/N, $\lambda/(\phi - 1)$ becomes close to 1.

Fourth, the expected growth rate of the detrended firm-side variables, that is, the expected growth rate of $\tilde{z}_{j,t}^{\phi - 1}$, is negative when the firm does not restructure. We can show this property, that is, $(\phi - 1) \left(\mu_z - g_z - m + ((\phi - 1) - 1) \frac{\alpha_z z^2}{2} \right) < 0$, from (21), if $\lambda/(\phi - 1) \geq 1$, which is satisfied when the third remark holds. This is a key property that generates a Pareto distribution with a finite distributional mean. In the absence of this property, the distribution diffuses over time.

4 Aggregate Dynamics and Equilibrium of the Model

In this model, because the household’s policy functions are independent of its asset level, the dynamics of aggregate variables are obtained independent of the
heterogeneity within entrepreneurs, innate workers, and former entrepreneurs. In this section, we first summarize this property and then define the equilibrium of the model.

4.1 Aggregate dynamics of the model

Let the variables with tilde, such as \tilde{K}_t, be the variables detrended by e^{gt}. We show in Appendix C.1 that the aggregate dynamics of the detrended variables can be reduced to the differential equations of $\tilde{S}_t \equiv S_t/e^{gt} = (\tilde{A}_{e,t}, \tilde{A}_{w,t}, \tilde{A}_{f,t}, \tilde{H}_t, \tilde{K}_t)$, that is,

$$d\tilde{S}_t = \mu_S(\tilde{S}_t)dt.$$ \hfill (24)

Note that $\tilde{A}_{e,t}$, $\tilde{A}_{w,t}$, and $\tilde{A}_{f,t}$ are the (detrended) aggregate total assets of entrepreneurs, innate workers, and former entrepreneurs, respectively. Thus, their sum is equal to the aggregate total asset \tilde{A}_t. As also shown in Appendix C.1, price variables, $\tilde{r}_t \equiv (r^f_t, \mu_q_t, \sigma_q_t)$, are functions of \tilde{S}_t, that is,

$$\tilde{r}_t = f_t(\tilde{S}_t).$$ \hfill (25)

4.2 Definition of a competitive equilibrium

Using the property of the aggregate dynamics, we now define the equilibrium of the model. For this, we specify the initial endowment of physical capital and stocks in the following manner. First, to simplify the analysis, in what follows, we focus on the equilibrium under which the initial capital of a firm is proportional to the firm’s productivity, that is, $\tilde{k}_{j,0} \propto \tilde{z}^{\phi-1}_{j,0}$. Then, the initial value of the firm is also proportional to the firm’s productivity, that is,

$$q_{j,0} = \frac{\tilde{z}^{\phi-1}_{j,0}}{\mathbb{E}\{\tilde{z}^{\phi-1}_{j,0}\}} \tilde{Q}_0,$$

where $\tilde{Q}_0 = \tilde{A}_0 - \tilde{H}_0$. \hfill (26)

Second, we assume that all stocks are initially owned by households, and except for those held by entrepreneurs, are sold to the financial intermediaries.
at period 0.\(^9\) Let \(s_{j,0}^i\) be the initial shares of firm \(j\) held by household \(i\) (then, e.g., \(\int_0^L s_{j,0}^i di = 1\)).

A competitive equilibrium of the model, given the set of the firms’ productivities, \(\{\ddot{z}_{j,t}\}_{j,t}\), the initial capital of firms, \(\bar{k}_{j,0} \propto \dot{z}_{j,0}^{-1}\), and the initial shares of firms held by households, \(\{s_{j,0}^i\}_{i,j}\), is a set of household variables, \(\{x_{i,t}, v_{i,t}, a_{i,t}\}_{i,t}\), price variables, \(\bar{q}_{j,0}\) and \(\{\bar{r}_t\}_t \equiv \{r^f_t, \mu_{q,t}, \sigma_{q,t}\}_t\), and aggregate variables, \(\{\bar{S}_t\}_t \equiv \{S_t/\varepsilon^{gt}\}_t = \{\bar{A}_{e,t}, \bar{A}_{w,t}, \bar{A}_{f,t}, \bar{H}_t, \bar{K}_t\}_t\), such that

- the household variables, \(\{x_{i,t}, v_{i,t}, a_{i,t}\}_{i,t}\), where \(a_{i,0} = \int_0^N \bar{q}_{j,0}s_{j,0}^i dj + \bar{H}_0/L\), are chosen according to the household’s decisions on the portfolio choice (3) and (4), and the law of motion for total asset (1), and satisfy the transversality condition (5),

- the price variables, \(\bar{q}_{j,0}\) and \(\{\bar{r}_t\}_t\), are determined by the aggregate variables \(\bar{S}_t\) according to (26) and (25),

- and the aggregate variables, \(\{\bar{S}_t\}_t\), evolve according to (24).

5 Households’ Asset Distributions in the Steady State

In this model, households’ asset distributions in the steady state can be derived analytically. We show below that the asset distributions of entrepreneurs, innate workers, and former entrepreneurs are all Pareto distributions. We also discuss that the asset, income, and consumption distributions of all households follow a Pareto distribution at the upper tail, whose Pareto exponent coincides with that of the asset distribution of entrepreneurs.

\(^9\)We assume that the sellout to financial intermediaries is mandatory. We can relax the assumption and allow households by paying transaction costs \(\epsilon\) to hold risky stocks of the firms not managed by them. See the discussion at the end of Section 2.1.
5.1 Asset distribution of entrepreneurs

An individual entrepreneur’s asset, $\tilde{a}_{e,t}$, if he does not die, evolves as

$$d \ln \tilde{a}_{e,t} = \left(\mu_{ae} - g - \frac{\sigma_{ae}^2}{2} \right) dt + \sigma_{ae} dB_{t,t},$$

where μ_{ae} and σ_{ae} are the drift and diffusion parts of the entrepreneur’s asset process, respectively. Because they are constants in the steady state, we omit the time subscript.

The initial asset of entrepreneurs with age t' at period t is $h_{t-t'}$. The asset of the entrepreneurs who are alive at t, relative to their initial asset, is given by

$$\ln(\tilde{a}_{e,t}) = \ln(\tilde{a}_{e,t}) - (\ln h_{t-t'} - g t'),$$

which follows a normal distribution with mean $(\mu_{ae} - \sigma_{ae}^2/2) t'$ and variance $\sigma_{ae}^2 t'$.

We obtain the asset distribution of entrepreneurs by combining the above property with the assumption of constant probability of death. The probability density function of log assets becomes a double-exponential distribution (see Appendix D for the derivations in this section).

$$f_e(\ln \tilde{a}_i) = \begin{cases} f_{e1}(\ln \tilde{a}_i) \equiv \frac{(\nu + p_f) N}{L} \exp \left[-\psi_1 (\ln \tilde{a}_i - \ln \bar{h}) \right] & \text{if } \tilde{a}_i \geq \bar{h}, \\ f_{e2}(\ln \tilde{a}_i) \equiv \frac{(\nu + p_f) N}{L} \exp \left[\psi_2 (\ln \tilde{a}_i - \ln \bar{h}) \right] & \text{otherwise}, \end{cases}$$

where

$$\psi_1 \equiv \frac{\mu_{ae} - g - \sigma_{ae}^2/2}{\frac{\theta}{\mu_{ae} - g - \sigma_{ae}^2/2} - 1}, \quad \psi_2 \equiv \frac{\mu_{ae} - g - \sigma_{ae}^2/2}{\frac{\theta}{\mu_{ae} - g - \sigma_{ae}^2/2} + 1},$$

$$\theta \equiv \sqrt{2(\nu + p_f) \sigma_{ae}^2 + (\mu_{ae} - g - \sigma_{ae}^2/2)^2}.$$

This result shows that the asset distribution of entrepreneurs follows a double-Pareto distribution (Benhabib et al., 2014 and Toda, 2014), whose Pareto

\footnotetext{10}{We normalize the probability density functions of entrepreneurs, innate workers, and former entrepreneurs, $f_e(\ln \tilde{a}_i)$, $f_w(\ln \tilde{a}_i)$, and $f_f(\ln \tilde{a}_i)$, respectively, such that

$$\int_{-\infty}^{\infty} \{ f_e(\ln \tilde{a}_i) + f_w(\ln \tilde{a}_i) + f_f(\ln \tilde{a}_i) \} d(\ln \tilde{a}_i) = 1.$$}
exponent at the upper tail is ψ_1.

5.2 Asset distribution of innate workers

An individual worker’s asset, $\tilde{a}_{\ell,t}$, if he does not die, evolves as

$$d\ln \tilde{a}_{\ell,t} = (\mu_{a\ell} - g) \, dt,$$

where $\mu_{a\ell}$ is the drift part of the worker’s asset process.

Under the asset process, the asset distribution of innate workers becomes

$$f_w(\ln \tilde{a}_i) = \begin{cases} \frac{\nu\psi_1}{\nu-\psi_1(\mu_{a\ell}-g)\nu} \frac{1}{\nu-\psi_1(\mu_{a\ell}-g)} \exp\left(-\frac{\nu}{\mu_{a\ell}-g}(\ln \tilde{a}_i - \ln \tilde{h})\right) & \text{if } \frac{\ln \tilde{a}_i - \ln \tilde{h}}{\mu_{a\ell}-g} \geq 0, \\ 0 & \text{otherwise.} \end{cases}$$

The result shows that the log assets of innate workers follow an exponential distribution, which implies that their assets follow a Pareto distribution. With the parameter values in numerical analysis, the trend growth of workers’ assets is close to the trend growth of the economy, that is, $\mu_{a\ell} \approx g$. Then, the detrended assets of innate workers concentrate at the level around \tilde{h}.

5.3 Asset distribution of former entrepreneurs

The asset distribution of former entrepreneurs depends on the entrepreneurs’ asset distribution, the Poisson rate p_f with which each entrepreneur leaves the firm, and the asset process after the entrepreneur becomes a worker.

We can analytically derive the steady-state asset distribution of former entrepreneurs. Here, for brevity, we only report the case where $\mu_{a\ell} \geq g$ (for the derivation, see Appendix D).

$$f_f(\ln \tilde{a}_i) = \begin{cases} \frac{p_f}{\nu-\psi_1(\mu_{a\ell}-g)} f_{v1}(\ln \tilde{a}_i) - \left(\frac{1}{\nu-\psi_1(\mu_{a\ell}-g)} - \frac{1}{\nu+\psi_2(\mu_{a\ell}-g)}\right) p_f f_{e1}(\ln \tilde{h}) \\ \times \exp\left(-\frac{\nu}{\mu_{a\ell}-g}(\ln \tilde{a}_i - \ln \tilde{h})\right) & \text{if } \ln \tilde{a}_i \geq \ln \tilde{h}, \\ \frac{p_f}{\nu+\psi_2(\mu_{a\ell}-g)} f_{v2}(\ln \tilde{a}_i) & \text{otherwise.} \end{cases}$$
The probability density function for $a_i \geq \bar{h}$ consists of two exponential terms. As the asset level increases, the second term, representing the innate workers’ distribution, declines faster than the first term, the distribution of entrepreneurs. Therefore, the Pareto exponent of the former entrepreneurs’ asset distribution becomes the same as that of entrepreneurs in the tail of the distribution (the same result applies to the case where $\mu_{at} < g$).

5.4 Pareto exponents of asset and income distributions for all households

We make two remarks on households’ asset and income distributions. First, the Pareto exponent at the upper tail of the households’ asset distribution is the same as that of the entrepreneurs’ asset distribution, ψ_1. This is because, as noted above, the distribution of the smallest Pareto exponent dominates at the upper tail (see, e.g., Gabaix, 2009).

Second, in this model, the consumption and income distributions at the upper tail are also Pareto distributions with the same Pareto exponent as that of assets, ψ_1. This is because the consumption and income of a household are proportional to the household’s asset level.

6 Numerical Analysis

In this section, we numerically analyze how a reduction in the top marginal tax rate accounts for the evolution of top incomes in recent decades. For this, we assume that an unexpected and permanent tax cut occurs in 1975.

There are three reasons for choosing 1975 as the year of the structural change. First, several empirical studies suggest that inequality began to grow since the 1970s (see, e.g., Katz and Murphy, 1992 and Piketty and Saez, 2003). Second, some political scientists argue that during the 1970s, U.S. politics began to favor industries (Hacker and Pierson, 2010), which might have affected entrepreneurs’ future expectations regarding tax rates. Third, the top marginal earned income tax declined from 77% to 50% during the 1970s alone.
(see Figure 1). This would make CEOs anticipate a subsequent cut in the top ordinary earned income tax, the most important variable in our analysis to account for the evolution of top incomes. These factors suggest that a structural change occurred during the 1970s.

In our model, a tax cut affects top incomes by changing entrepreneurs’ incentives to invest in risky stocks. In the tax parameters calibrated below, after 1975, the tax rate on risky stock τ^e becomes relatively lower than the tax rate on the risk-free asset τ^f. This induces entrepreneurs to increase the share of risky stocks in their asset portfolios. This is the reason why the Pareto exponent declines and the top income share increases in our model.

6.1 Tax rates

We assume that the risky stock in our model is a representation of incentive pay, such as employee stock options. Thus, we set the tax on risky stocks τ^e to be equal to the top marginal ordinary income tax that is imposed on top CEOs’ pay. On the other hand, the tax on risk-free assets, we assume, is the sum of taxes that investors bear when they hold equities. We calculate the tax on risk-free assets τ^f by using the equation $1 - \tau^f = (1 - \tau^{\text{cap}})(1 - \tau^{\text{corp}})$, where τ^{cap} and τ^{corp} are the marginal tax rates for capital gains and corporate income, respectively.\footnote{Although we use the capital gains tax primarily because of the availability of data, it can be justified by the following reasoning. We assume that a firm uses all its profit for purchasing shares. Then, the firm pays households money equal to the profit after corporate income tax. The money the households obtain is capital gains, on which capital gains tax is imposed. (Finally, after a part of the after-tax money is paid to financial intermediaries as transaction costs, the households obtain the residual.)} These tax rates are calibrated by using the top statutory marginal federal tax rates reported in Saez et al. (2012) (see Figure 1 and Table 1).

6.2 Calibration

The parameters are chosen to roughly match the annual data. The first five parameters in Table 2 are standard values. For example, we assume for ν that
Note: The data are taken from Table A1 of Saez et al. (2012).

Table 1: Tax rates

<table>
<thead>
<tr>
<th></th>
<th>Pre-1975</th>
<th>Post-1975</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordinary income tax, τ_{ord}</td>
<td>0.75</td>
<td>0.40</td>
</tr>
<tr>
<td>Corporate income tax, τ_{corp}</td>
<td>0.50</td>
<td>0.35</td>
</tr>
<tr>
<td>Capital gain tax, τ_{cap}</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

τ^e = 0.75, 0.40

τ^f = 0.63, 0.51

Notes: The values in the upper half of the table are calibrated from the top statutory marginal federal tax rates in Figure 1, taken from Saez et al. (2012). The tax rate on risky stocks, τ^e, is set to be equal to τ_{ord}. The tax rate on risk-free assets, τ^f, is calculated by $1 - (1 - \tau_{\text{cap}})(1 - \tau_{\text{corp}})$.

The average length of life after a household begins working is 50 years. ϕ is set to 3.33, implying that 30% of a firm’s sales is rent. The value of ϕ is lower than the standard value owing to two reasons. First, our model’s treatment of entrepreneurial income is different from the data—in our model, an entrepreneur’s income comes mainly from the firm’s dividend, whereas in the data, the CEO’s pay, in most situations, is categorized as labor income. A lower ϕ is chosen to take this into account. Second, if ϕ is high, in the situation that entrepreneurs choose s_{it} according to (3), the total value of an entrepreneur’s risky stocks exceeds the total value of financial assets in the economy. To avoid this, a low ϕ should be chosen.
For p_f, we assume that the CEO’s average term of office is 20 years. ℓ_{min} is set to unity, that is, the minimum employment level is one person. We assume that $L = 1.0$ and $N = 0.05$. This implies that the average employment of a firm is 20 persons, which is consistent with the data reported in Davis et al. (2007). Under the settings, the Pareto exponent of the firm size distribution in the model is $1/(1 - 0.05) \approx 1.0526$, which is consistent with Zipf’s law. Note that under these parameters, for small-sized firms, the value of an entrepreneur’s risky stock calculated by (3) exceeds the value of his firm. To resolve this problem, we assume that such an entrepreneur jointly runs a business with other entrepreneurs, such that the asset value of the entrepreneurs’ risky stocks does not exceed the value of the joint firms. We assume that the productivity shocks of the joint firms move in the same direction. A possible reason for this assumption is that productivity shocks are caused by managerial decisions.

To calibrate firm-level volatility, we consider two cases. In Case A, we use the average firm-level volatility of publicly traded firms. In Case B, we use the average firm-level volatility of both publicly traded and privately held firms. These values are taken from Davis et al. (2007). In each case, the transaction cost of financial intermediaries, t, is calibrated to match the Pareto exponent in the pre-1975 steady state with 2.4. This is close to the data around 1975. To investigate whether the calibrated t is reasonable, we use this calibration in Table 3 to compute the model’s predictions on the size of the financial sector over GDP, $t \left(1 - \frac{\tilde{A}_{t,xt}}{q_t}\right) \tilde{D}_t/\tilde{Y}_t$. We find that the model’s predictions under the calibrated t are roughly comparable with the data.

6.3 Computation of transition dynamics

We compute the Pareto exponent of the household’s income (or asset) distribution and the top 1% income share before and after 1975. We assume that before 1975, the economy is in the pre-1975 steady state. In our experiment, taxes change unexpectedly and permanently in 1975, and the economy moves toward the post-1975 steady state.

We model the transition dynamics after 1975 as follows. First, the dynam-
Table 2: Calibrated parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>Discount rate</td>
<td>0.04</td>
</tr>
<tr>
<td>ν</td>
<td>Probability of death</td>
<td>1/50</td>
</tr>
<tr>
<td>α</td>
<td>Capital share</td>
<td>1/3</td>
</tr>
<tr>
<td>δ</td>
<td>Depreciation rate</td>
<td>0.1</td>
</tr>
<tr>
<td>g</td>
<td>Steady-state growth rate</td>
<td>0.02</td>
</tr>
<tr>
<td>ϕ</td>
<td>Elasticity of substitution</td>
<td>3.33</td>
</tr>
<tr>
<td>p_f</td>
<td>Probability of entrepreneur’s quitting</td>
<td>1/20</td>
</tr>
<tr>
<td>ℓ_{\min}</td>
<td>Minimum level of employment</td>
<td>1</td>
</tr>
<tr>
<td>L</td>
<td>Mass of population</td>
<td>1.0</td>
</tr>
<tr>
<td>N</td>
<td>Mass of entrepreneurs</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Notes: The values of firm-level volatility of employment are taken from Figure 2.6 of Davis et al. (2007). In Case A, firm-level volatility is equal to that of publicly traded firms in the data. In Case B, firm-level volatility is equal to that of both publicly traded and privately held firms in the data.

Table 3: Size of the financial sector

<table>
<thead>
<tr>
<th></th>
<th>Case A</th>
<th>Case B</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\phi - 1)\sigma_z$</td>
<td>Firm-level volatility of employment</td>
<td>0.25</td>
</tr>
<tr>
<td>ι</td>
<td>Transaction costs of financial intermediary</td>
<td>0.215</td>
</tr>
</tbody>
</table>

Notes: The table on the left shows the model’s predictions on the size of the financial sector over GDP $\iota\left(1 - \frac{A_{e,t}^f}{Q_{t}}\right)\bar{D}_t/\bar{Y}_t$ at the pre- and post-1975 steady states under the parameter values in Cases A and B. The table on the right shows the share of the financial sector in GDP in the U.S. in 1980 and 2006. These data are taken from Greenwood and Scharfstein (2013).

ics of aggregate variables are computed separately. To compute the dynamics of a set of the aggregate variables $\tilde{S}_t \equiv S_t/e^{g_t} = (\tilde{A}_{e,t}, \tilde{A}_{w,t}, \tilde{A}_{f,t}, \tilde{H}_t, \tilde{K}_t)$ explained in Section 4.1, we need to pin down their initial values. We suppose that when the tax change occurs in 1975, the aggregate capital stock is the same as that in the pre-1975 steady state. For ease of computation, we also suppose perfect risk-sharing for the unexpected but verifiable change in
asset values that is caused by the tax change. Then, the asset shares of entrepreneurs, innate workers, and former entrepreneurs, \(A_{e,1975}/A_{1975}, A_{w,1975}/A_{1975}, A_{f,1975}/A_{1975} \), respectively, are the same as those in the pre-1975 steady state.

The remaining initial variables, \(\tilde{A}_{1975} \) and \(\tilde{H}_{1975} \), are determined by using the shooting algorithm (for details, see Appendix C.2).

Next, from the aggregate variables calculated above, we compute the variables related to the entrepreneurs’ and workers’ asset processes, \(\mu_{ae,t}, \sigma_{ae,t}, \) and \(\mu_{at,t} \), respectively. Using these variables, we compute the asset (and thus income) distribution at the upper tail. The transition dynamics of the distribution can be computed by numerically solving the Fokker–Planck equations for the asset distributions of entrepreneurs and workers, \(f_e(\ln \tilde{a}_{i,t}; t) \) and \(f_f(\ln \tilde{a}_{i,t}; t) \), respectively, as follows:

\[
\frac{\partial f_e(\ln \tilde{a}_{i,t}; t)}{\partial t} = -\left(\mu_{ae,t} - \frac{\sigma_{ae,t}^2}{2} - g \right) \frac{\partial f_e(\ln \tilde{a}_{i,t}; t)}{\partial \ln \tilde{a}_{i,t}} + \frac{\sigma_{ae,t}^2}{2} \frac{\partial^2 f_e(\ln \tilde{a}_{i,t}; t)}{\partial (\ln \tilde{a}_{i,t})^2} - (\nu + p_f) f_e(\ln \tilde{a}, t),
\]

\[
\frac{\partial f_f(\ln \tilde{a}_{i,t}; t)}{\partial t} = -\left(\mu_{at,t} - g \right) \frac{\partial f_f(\ln \tilde{a}_{i,t}; t)}{\partial \ln \tilde{a}_{i,t}} + p_f f_e(\ln \tilde{a}, t) - \nu f_f(\ln \tilde{a}, t).
\]

We impose the boundary conditions that \(\lim_{\tilde{a}_{i,t} \to \infty} f_i(\ln \tilde{a}_{i,t}, t) = 0 \) and that at the lower bound of \(\tilde{a}_{i,t}, \tilde{a}_{LB}, f_i(\ln \tilde{a}_{LB}, t) \), moves linearly during the 50 years from the pre-1975 to the post-1975 steady state.

6.4 Pareto exponent and the top 1% income share

Figures 2 and 3 plot the model’s predictions of the Pareto exponent and the top 1% share of income distribution for Case A, together with the data. Data are taken from Alvaredo et al. (2013). For the model’s predictions, we plot the two steady states for the pre- and post-1975 periods and the transition path between them.

We find that the model traces data for the Pareto exponent well. Although

12 We use the partial differential equations solver in Matlab. We set 2000 mesh points to \(\ln \tilde{a}_{i,t} \) between \(\ln \tilde{a}_{LB} \) and 100 and 500 mesh points to time \(t \) between 1975 and 2030.

13 \(\tilde{a}_{LB} \) is set to be higher than \(\tilde{h} \) at the pre- and post-1975 steady states.

14 The Pareto exponent during the transition path is calculated from the slope of the countercumulative distribution of assets between the top 0.1% and top 1%.
is set to match the level of the Pareto exponent at the initial steady state, it is nontrivial that the model matches both the level and changes in the Pareto exponent afterward. For example, suppose that we need to set a low (high) \(\lambda \) to match the Pareto exponent at the initial steady state. Then, the changes in the Pareto exponent during the transition become slower (faster) than the data because the volatility of each entrepreneur’s asset decreases (increases).

The model also captures the trend in the top 1% share of income after 1975, although the model’s prediction is somewhat lower in level than what the data reveal. It is possible that other factors, such as rewards for CEOs’ talents as argued by Gabaix and Landier (2008) and bargaining and rent-extraction by CEOs as emphasized by Piketty et al. (2011), account for this gap.

The corresponding results for Case B are graphed in Figures 4 and 5. The
model’s transitions of the Pareto exponent and the top 1% share of income become slower than those in Case A. This is because the firm’s volatility becomes higher in Case B. This makes $x_{e,t}$ lower by (3), which results in lower volatility of the entrepreneur’s asset. This perhaps implies that the lower firm-level volatility in the top firms, where the richest CEOs are employed, is an important factor in understanding the evolution of top incomes.

To take a closer look at the evolution of inequality in the model, in Figure 6, we plot the countercumulative distributions of the household’s detrended asset, $Pr(\tilde{a}_{i,j} > \tilde{a})$, at the pre- and post-1975 steady states and the transition paths. We find that from a lower asset level, the asset distribution converges to the new stationary distribution at the post-1975 steady state. In other words, the convergence is slower at the wealthiest level. We also find that the
Figure 6: Household’s asset distributions

Notes: The figures plot the countercumulative distributions of the household’s detrended asset under the pre- and post-1975 steady states as well as the transition paths. For example, “1985 (transition)” indicates the asset distribution in 1985 under the model’s transition path. The figure on the left presents the distributions for Case A, whereas the figure on the right presents them for Case B.

convergence is faster in Case A than in Case B. This is consistent with the above results.

6.5 Implications of the model

6.5.1 Incentive pay for CEOs

In the real world, CEOs obtain incentive pay, such as stock options, whose value moves in line with the firm’s performance. In our model, this is represented by entrepreneurs holding risky stocks of their firms. Here, we discuss whether our formulation is realistic.

Our formulation of CEO pay has a close similarity with those of Edmans et al. (2009) and Edmans et al. (2012). These papers theoretically derive that under the optimal incentive scheme of a CEO in a moral hazard problem, a fraction of the CEO’s total assets, denoted by \(x_{e,t} \) in our model, is invested in his firm’s stocks. Although our model does not take into account the moral hazard problem of CEOs, it has a similar feature. Edmans et al. (2009) also find evidence that an empirical counterpart of \(x_{e,t} \), “percent–percent” incen-
tives, which is a variant of (27) below, is cross-sectionally independent of firm size. This property is satisfied both in their and our models.

There are also differences between our model and the models of Edmans et al. (2009) and Edmans et al. (2012). In their models, only the disutility of effort, a deep parameter, affects the fraction of the entrepreneur’s assets invested in his firm’s stocks. In our model, however, several factors affect this fraction; for example, an increase in the volatility of firm value decreases the fraction of the entrepreneur’s total assets invested in risky stocks $x_{e,t}$ (see (3)). This prediction is consistent with the evidence surveyed in Frydman and Jenter (2010, Section 2.3).

In our model, changes in taxes also affect the fraction of an entrepreneur’s assets invested in his firm’s stocks. This is a crucial factor in interpreting the recent evolution of top incomes. After the tax change, top incomes evolve in our model, because it becomes more profitable for CEOs to hold risky stocks. Thus, the tax change induces entrepreneurs’ holdings of risky stocks; that is, it induces an increase in $x_{e,t}$ in the post-1975 period. In the real world, this shows up as an increase in employee stock options. To check the plausibility of our formulation, we compare the model’s prediction with the data on incentive pay for CEOs.

An empirical counterpart of $x_{e,t}$ is

$$x\% \text{ increase in the CEO’s wealth}$$

$$1\% \text{ increase in firm rate of return}$$

because in our model, from (1), it is equal to

$$\frac{d(a_{e,t})/a_{e,t}}{\mu_{q,t}dt + \sigma_{q,t}dB_{e,t}} = x_{e,t}.$$

Unfortunately, a long-term estimate of (27) that covers the pre- and post-1975 periods is not available.

The difference between the “percent–percent” incentives and (27) below is that in the former, the numerator is “$x\%$ increase in the CEO’s pay.” They are equivalent in the model owing to (4), if the CEO’s pay is defined by the entrepreneur’s consumption as in Edmans et al. (2012).
Alternatively, a long-term estimate of a wealth–performance sensitivity measure (referred to as B^I in Edmans et al., 2009),

\[
\frac{x\% \text{ increase in the CEO's wealth}}{1\% \text{ increase in firm rate of return}} \times \frac{\text{the CEO's wealth}}{\text{the CEO's pay}},
\]

(28)

which is a modification of (27), can be calculated from data in Frydman and Saks (2010).\(^{16}\) We plot the wealth–performance measure constructed from Frydman and Saks (2010) and the model’s counterpart in Figure 7.\(^{17}\) We find that the wealth–performance measure has increased in the post-1975 period. Our model is qualitatively consistent with the data. The model interprets that this is brought about by the increase in $x_{e,t}$. Quantitatively, in Case A, the model’s prediction accounts for the magnitude of the change in wealth–performance measure in the post-1975 period, although the model does not account for the level of the measure. The opposite results apply for Case B. Of course, our model is not intended to explain the fluctuations in the wealth–performance measure itself, and it cannot explain why these incentives increase around the late 1950s. Further research is needed to understand these empirical facts.

6.5.2 Effect of tax change on capital accumulation

An important implication of the model is that a tax change does not significantly affect capital accumulation or the capital–output ratio of the economy. This result comes from the property that investment in capital is financed by retained earnings (for details, see Sinn, 1991 and McGrattan and Prescott, 2005). Then, the tax change does not affect the return on stocks $((1-\tau)d_{i,t} + dq_{i,t})/q_{i,t}$, because $q_{i,t}$ in the denominator of the equation changes

\(^{16}\)This measure is calculated by dividing the “dollar change in wealth for a 1% increase in the firm’s rate of return” by “total compensation,” both of which are taken from Figures 5 and 6 of Frydman and Saks (2010).

\(^{17}\)The model’s counterpart of the wealth–performance measure in (28) is calculated from

\[
\frac{d(a_{e,t})}{\mu_q,tdt + \sigma_q,t \sigma_d,B_{e,t}} a_{e,t} \mu_{a,t} a_{e,t} + c_{e,t} = \frac{x_{e,t}}{\mu_{a,t} + \beta + \nu}.
\]
Figure 7: Wealth–performance measure

Notes: For the definition of the wealth–performance measure, see (28). The data are calculated by dividing the “dollar change in wealth for a 1% increase in the firm’s rate of return” by “total compensation,” both of which are estimated in Frydman and Saks (2010). These data correspond to the median values of the 50 largest firms.

to exactly offset the effect of tax change \((1 - \tau)\) in the numerator.

This prediction of the model is in stark contrast to those obtained in previous models of income distribution. However, it is consistent with the facts that in the U.S. the capital–output ratio has not changed significantly over the post-World War II years; nor has the level of per capita output increased recently.

6.5.3 Welfare analysis

How has tax change affected the welfare of households? To determine this, we calculate the utility level of an entrepreneur and an innate worker (that is, a worker from the beginning of his life) in the pre- and post-1975 steady states. Table 4 shows the detrended initial utility level, defined by \(V^i(\tilde{h}, S)\) under parameterization of Cases A and B (for details of the derivations, see Appendix E).

Not surprisingly, the utility level of an innate worker becomes lower in the post-1975 steady state under Cases A and B parameterizations, whereas that of an entrepreneur becomes higher under Case A parameterization. These results are consistent with the view that the rich have benefited from tax change at
Table 4: Welfare analysis

<table>
<thead>
<tr>
<th></th>
<th>Case A</th>
<th></th>
<th>Case B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$V^e(h, S)$</td>
<td>$V^w(h, S)$</td>
<td>$V^e(h, S)$</td>
<td>$V^w(h, S)$</td>
</tr>
<tr>
<td>Pre-1975</td>
<td>36.27</td>
<td>35.03</td>
<td>Pre-1975</td>
<td>36.23</td>
</tr>
<tr>
<td>Post-1975</td>
<td>36.55</td>
<td>32.84</td>
<td>Post-1975</td>
<td>35.63</td>
</tr>
</tbody>
</table>

Notes: The table calculates the detrended initial utility level of an entrepreneur and an innate worker at the pre- and post-1975 steady states. The detrended initial utility level is defined by $V^i(h, S)$. The table on the left presents these calculations for Case A, whereas the table on the right presents them for Case B.

7 Conclusion

We have proposed a model of asset and income inequalities that explains both Zipf’s law of firms and Pareto’s law of incomes from the idiosyncratic productivity shocks of firms. Empirical studies show that the Pareto exponent of income varies over time, whereas Zipf’s law of firm size is quite stable. This paper consistently explains these distributions with an analytically tractable model. We derive closed-form expressions for the stationary distributions of firm size and individual income. The transition dynamics of those distributions are also explicitly derived and are then used for numerical analysis.

Our model features an entrepreneur who can invest in his own firm as well as in risk-free assets. The entrepreneur incurs a substantial transaction cost if he diversifies the risk of his portfolio returns. When a tax on risky returns is reduced, the entrepreneur increases the share of his own firm’s stock in his portfolio. This, in turn, increases the variance of his portfolio returns, resulting in a wider dispersion of wealth among entrepreneurs.
By calibrating the model, we have analyzed the extent to which changes in tax rates account for the recent evolution of top incomes in the U.S. We find that the model matches the decline in the Pareto exponent of income distribution and the trend in the top 1% income share. There remain some discrepancies between the model and data. For example, the model’s prediction of the top 1% share is somewhat lower than the data. Further research is needed to understand the causes of such discrepancies.

References

A Derivations for household’s problem

This appendix shows the derivations of the household problem in Section 2.1. As shown in Section 4.1, the aggregate dynamics of the model is described by S_t, whose evolution can be written as

$$dS_t = \mu_S(S_t)dt.$$

From Ito’s formula, $V^i(a_{i,t}, S_t)$ can be rewritten as follows:

$$dV^i(a_{i,t}, S_t) = \frac{\partial V^i}{\partial a_{i,t}} da_{i,t} + \frac{1}{2} \frac{\partial^2 V^i}{\partial a_{i,t}^2} (da_{i,t})^2 + \frac{\partial V^i}{\partial S_t} dS_t + \left(V^\ell(a_{i,t}, S_t) - V^i(a_{i,t}, S_t) \right) dJ_{i,t},$$

where $J_{i,t}$ is the Poisson jump process that describes the probability of an entrepreneur to leave his firm and become a worker.

$$dJ_{i,t} = \begin{cases} 0 & \text{with probability } 1 - p_f dt \\ 1 & \text{with probability } p_f dt. \end{cases}$$

Thus,

$$E_t[dV^i_t] = \mu_{a,t} a_{i,t} \frac{\partial V^i}{\partial a_{i,t}} + \frac{(\sigma_{a,t} a_{i,t})^2}{2} \frac{\partial^2 V^i}{\partial a_{i,t}^2} + \mu_S(S_t) \frac{\partial V^i}{\partial S_t} + p_f (V^\ell_t - V^i_t),$$

41
where $\mu'_S(S_t)$ is the transposed vector of $\mu_S(S_t)$. Substituting into (2), we obtain a Hamilton–Jacobi–Bellman equation as follows:

$$
0 = \max_{c_i,t,x_i,t} \ln c_i,t - (\beta + \nu)V^i_t + \mu_{a,t}a_{i,t} \frac{\partial V^i_t}{\partial a_{i,t}} + \frac{(\sigma_{a,t}a_{i,t})^2}{2} \frac{\partial^2 V^i_t}{\partial a_{i,t}^2}
$$

$$
+ \mu'_S(S_t) \cdot \frac{\partial V^i_t}{\partial S_t} + p_f (V^f_t - V^i_t)
$$

$$
= \max_{c_i,t,x_i,t} \ln c_i,t - (\beta + \nu)V^i_t + \frac{\sigma^2_{q,t}}{2} x_{i,t}^2 a_{i,t} \frac{\partial^2 V^i_t}{\partial a_{i,t}^2}
$$

$$
+ ((\nu + \mu_{q,t}) x_{i,t} a_{i,t} + (\nu + r^f_t)(1 - x_{i,t}) a_{i,t} - c_{i,t}) \frac{\partial V^i_t}{\partial a_{i,t}}
$$

$$
+ \mu'_S(S_t) \cdot \frac{\partial V^i_t}{\partial S_t} + p_f (V^f_t - V^i_t).
$$

(29)

The FOCs with respect to $c_{i,t}$ and $x_{i,t}$ are summarized as follows:

$$
c^{-1}_{i,t} = \frac{\partial V^i_t}{\partial a_{i,t}},
$$

(30)

$$
x_{i,t} = \begin{cases}
- \frac{\partial V^i_t}{\partial a_{i,t}} \frac{\mu_{q,t} - r^f_t}{(\partial^2 V^i_t / \partial a_{i,t}^2) a_{i,t} \sigma^2_{q,t}}, & \text{if } i = e, \\
0, & \text{otherwise}.
\end{cases}
$$

(31)

Furthermore, (29) has to satisfy the transversality condition (5).

Following Merton (1969) and Merton (1971), this problem is solved by the following value function and linear policy functions:

$$
V^i_t = B^i_t \ln a_{i,t} + H^i(S_t),
$$

(32)

$$
c_{i,t} = v_{i,t} a_{i,t},
$$

$$
g_{i,t} s_{i,t} = x_{i,t} a_{i,t},
$$

$$
b_{i,t} = (1 - x_{i,t}) a_{i,t} - h_t.
$$

We obtain this solution by guess–and–verify. The FOC (30) becomes

$$
(v_{i,t})^{-1} = B^i_t.
$$
Condition (31) is rewritten as

\[x_{i,t} = \begin{cases} \frac{\mu_q - r_f}{\sigma_q}, & \text{if } i = e, \\ 0, & \text{otherwise.} \end{cases} \]

Substituting these results into (29), we find that

\[v_{i,t} = \beta + \nu. \]

B Derivations for the firm’s problem

B.1 FOCs of the firm’s problem

This appendix shows the derivations of the firm’s problem described in Section 2.2.2. \(q_{j,t} \) is a function of \(k_{j,t}, z_{j,t}, \) and the aggregate dynamics \(S_t \) (see Appendix A). By applying Itô’s formula to \(q_{j,t} \), we obtain

\[
dq(k_{j,t}, z_{j,t}, S_t) = \left(\frac{\partial q_{j,t}}{\partial z_{j,t}} dz_{j,t} + \frac{\partial q_{j,t}}{\partial k_{j,t}} dk_{j,t} + \frac{\partial q_{j,t}}{\partial S_t} dS_t \right) + \frac{1}{2} \frac{\partial^2 q_{j,t}}{\partial z_{j,t}^2} (dz_{j,t})^2 \\
= \left(\mu_z \frac{\partial q_{j,t}}{\partial z_{j,t}} + \frac{1}{2} \sigma_z^2 \frac{\partial^2 q_{j,t}}{\partial z_{j,t}^2} \right) dt + \frac{\partial q_{k,t}}{\partial k_{j,t}} dk_{j,t} + \sigma_z \frac{\partial q_{j,t}}{\partial z_{j,t}} dB_{j,t}.
\]

From the above equation, the FOCs of (7) for \(\ell_{j,t} \) and \(dk_{j,t} \) are

\[
(1 - \tau^f - \iota) = \frac{\partial q_{j,t}}{\partial k_{j,t}},
\]

\[
w_t = \frac{\partial p_{j,t} y_{j,t}}{\partial \ell_{j,t}}.
\]

By the envelope theorem,

\[
\tau^f \frac{\partial q_{j,t}}{\partial k_{j,t}} dt = (1 - \tau^f - \iota) \left(\frac{\partial p_{j,t} y_{j,t}}{\partial k_{j,t}} dt - \delta dt \right).
\]
By rearranging the equation, we obtain
\[r_t^f = \frac{\partial p_{j,t} y_{j,t}}{\partial k_{j,t}} - \delta. \]

B.2 Firm-side variables

This appendix briefly explains the derivations of the firm-side variables described in Section 3.1 and used in Appendix C.1. Our goal here is to rewrite the firm-side variables as the functions of MPK_t and exogenous variables. The basic strategy is as follows:

1. From FOCs (8) and (9), we rewrite $k_{j,t}$ and $\ell_{j,t}$ as the functions of MPK_t, w_t, Y_t, and exogenous variables.

From (9),
\[w_t = (1 - \alpha)(\phi - 1)/\phi \left(\frac{Y_t}{N} \right)^{1-(\phi-1)/\phi} z_{j,t}^{(\phi-1)/\phi} k_{j,t}^{\alpha(\phi-1)/\phi} \ell_{j,t}^{(1-\alpha)(\phi-1)/\phi}. \]

Rewriting this,
\[\ell_{j,t} = \left(\frac{(1 - \alpha)(\phi - 1)/\phi}{w_t} \left(\frac{Y_t}{N} \right)^{1-(\phi-1)/\phi} z_{j,t}^{(\phi-1)/\phi} k_{j,t}^{\alpha(\phi-1)/\phi} \right)^{1/(1-(\phi-1)/\phi)}. \]

(33)

On the other hand, from (8),
\[\text{MPK}_t = \alpha(\phi - 1)/\phi \left(\frac{Y_t}{N} \right)^{1-(\phi-1)/\phi} z_{j,t}^{(\phi-1)/\phi} k_{j,t}^{\alpha(\phi-1)/\phi} \ell_{j,t}^{(1-\alpha)(\phi-1)/\phi}. \]

(34)

By substituting (33) into (34) and rearranging,
\[k_{j,t}^{\frac{\alpha(\phi-1)/\phi}{1-(1-\alpha)(\phi-1)/\phi}} = \left(\frac{\alpha(\phi - 1)/\phi}{\text{MPK}_t} \left(\frac{Y_t}{N} \right)^{1-(\phi-1)/\phi} \right)^{\frac{\alpha(\phi-1)/\phi}{1-(\phi-1)/\phi}}. \]
\[
\times \left(\frac{(1 - \alpha)(\phi - 1)/\phi}{w_t} \left(\frac{Y_t}{N} \right)^{1-(\phi-1)/\phi} \right)^{\frac{\alpha(\phi-1)/\phi}{1-(\phi-1)/\phi}} \eta^{1-(\phi-1)/\phi} \; ,
\]

where \(\eta = \frac{(\phi-1)/\phi}{1-(1-\alpha)(\phi-1)/\phi} \). Substituting (35) into (33),

\[
\ell_{j,t} = \left(\frac{\alpha(\phi - 1)/\phi}{\text{MPK}_t} \left(\frac{Y_t}{N} \right)^{1-(\phi-1)/\phi} \right)^{\frac{\alpha(\phi-1)/\phi}{1-(\phi-1)/\phi}} \times \left(\frac{(1 - \alpha)(\phi - 1)/\phi}{w_t} \left(\frac{Y_t}{N} \right)^{1-(\phi-1)/\phi} \right)^{\frac{1-\alpha(\phi-1)/\phi}{1-(\phi-1)/\phi}} \; ,
\]

(36)

2. Using the labor market condition (11), we remove \(w_t \) from these equations.

By substituting (36) into the labor market condition (11) and rearranging,

\[
\left(\frac{\alpha(\phi - 1)/\phi}{\text{MPK}_t} \left(\frac{Y_t}{N} \right)^{1-(\phi-1)/\phi} \right)^{\frac{\alpha(\phi-1)/\phi}{1-(\phi-1)/\phi}} \times \left(\frac{(1 - \alpha)(\phi - 1)/\phi}{w_t} \left(\frac{Y_t}{N} \right)^{1-(\phi-1)/\phi} \right)^{\frac{1-\alpha(\phi-1)/\phi}{1-(\phi-1)/\phi}} = \frac{L}{N} \left\{ \frac{1}{\mathbb{E} \left\{ z_{j,t}^{\phi-1} \right\}} \right\} ,
\]

(37)

or,

\[
\left(\frac{(1 - \alpha)(\phi - 1)/\phi}{w_t} \left(\frac{Y_t}{N} \right)^{1-(\phi-1)/\phi} \right)^{\frac{1-\alpha(\phi-1)/\phi}{1-(\phi-1)/\phi}} = \left\{ \left(\frac{\alpha(\phi - 1)/\phi}{\text{MPK}_t} \left(\frac{Y_t}{N} \right)^{1-(\phi-1)/\phi} \right)^{\frac{\alpha(\phi-1)/\phi}{1-(\phi-1)/\phi}} \frac{L}{N} \mathbb{E} \left\{ z_{j,t}^{\phi-1} \right\} \right\} .
\]

(38)

Here, \(\mathbb{E} \) is the operator of the cross-sectional average of all firms. Then,
substituting (37) into (36),

\[\ell_{j,t} = \frac{L}{N} \left(\frac{z_{j,t}^{\phi-1}}{E\{z_{j,t}^{\phi-1}\}} \right). \]

(39)

Rewriting (35),

\[k_{j,t} = \left(\frac{\alpha(\phi - 1)/\phi}{\text{MPK}_t} \left(\frac{Y_t}{N} \right)^{1-(\phi-1)/\phi} \right)^{1-(1-\alpha)(\phi-1)/\phi} \times \left(\frac{(1-\alpha)(\phi - 1)/\phi}{w_t} \left(\frac{Y_t}{N} \right)^{1-(\phi-1)/\phi} \right)^{1-\alpha(\phi-1)/\phi} z_{j,t}^{\phi-1}. \]

(40)

Substituting (38) into (40),

\[k_{j,t} = \left(\frac{\alpha(\phi - 1)/\phi}{\text{MPK}_t} \left(\frac{Y_t}{N} \right)^{1-(\phi-1)/\phi} \right)^{\frac{1}{1-\alpha(\phi-1)/\phi}} \times \left(\frac{L}{N} \right)^{\frac{(1-\alpha)(\phi-1)/\phi}{1-\alpha(\phi-1)/\phi}} \left(\frac{E\{z_{j,t}^{\phi-1}\}}{1-\alpha(\phi-1)/\phi} \right). \]

(41)

3. Using the results, the production function, and the aggregate good function (10), we remove \(Y_t \) from the equations of the firm-side variables.

Substituting (39) and (41) into \(y_{j,t} = z_{j,t} k_{j,t}^{\alpha} \ell_{j,t}^{1-\alpha} \) and rearranging,

\[y_{j,t} = \left(\frac{\alpha(\phi - 1)/\phi}{\text{MPK}_t} \left(\frac{Y_t}{N} \right)^{1-(\phi-1)/\phi} \right)^{\frac{\alpha}{1-\alpha(\phi-1)/\phi}} \times \left(\frac{L}{N} \right)^{\frac{1-\alpha}{1-\alpha(\phi-1)/\phi}} \times \left(\frac{z_{j,t}^{\phi-1}}{E\{z_{j,t}^{\phi-1}\}} \right)^{\frac{1}{1-\alpha(\phi-1)/\phi}}. \]
Substituting this equation into \(Y_t = \left(\int_0^N \left(\frac{1}{N} \right)^{1-(\phi-1)/\phi} y_{j,t} \phi - 1 \right) / \phi \),

\[
\left(\frac{Y_t}{N} \right)^{1-(\phi-1)/\phi} = \left(\frac{\alpha(\phi - 1)/\phi}{\operatorname{MPK}_t} \right)^{\frac{\alpha(1-(\phi-1)/\phi)}{1-\alpha}} \left(\frac{L}{N} \right)^{1-(\phi-1)/\phi} \\
\times \mathbb{E} \left\{ z_{j,t}^{\phi-1} \right\}^{(1-(\phi-1)/\phi) \left[\frac{1-\alpha(\phi-1)/\phi}{1-(\phi-1)/\phi - 1} \right]}.
\]

Substituting (42) into (41),

\[
k_{j,t} = \left(\frac{\alpha(\phi - 1)/\phi}{\operatorname{MPK}_t} \right)^{\frac{1-\alpha}{\alpha(1-\phi)}} \mathbb{E} \left\{ z_{j,t}^{\phi-1} \right\}^{\frac{1}{\phi-1} \frac{1}{\alpha(1-\phi)}} \left(\frac{L}{N} \right)^{\frac{z_{j,t}^{\phi-1}}{\mathbb{E} \left\{ z_{j,t}^{\phi-1} \right\}}}
\]

Substituting (39) and (43) into (42),

\[
p_{j,t} y_{j,t} = Y_t^{1-(\phi-1)/\phi} y_{j,t} \phi - 1 \phi \\
= \left(\frac{\alpha(\phi - 1)/\phi}{\operatorname{MPK}_t} \right)^{\frac{1-\alpha}{\alpha(1-\phi)}} \mathbb{E} \left\{ z_{j,t}^{\phi-1} \right\}^{\frac{1}{\phi-1} \frac{1}{\alpha(1-\phi)}} \left(\frac{L}{N} \right)^{\frac{z_{j,t}^{\phi-1}}{\mathbb{E} \left\{ z_{j,t}^{\phi-1} \right\}}}
\]

Rewriting (39),

\[
\ell_{j,t} = \ell_t z_{j,t}^{\phi-1}, \text{ where } \ell_t \equiv \left(\frac{L/N}{\mathbb{E} \left\{ z_{j,t}^{\phi-1} \right\}} \right).
\]

Rewriting (45),

\[
p_{j,t} y_{j,t} = \overline{p} y_{j,t} \ell_t \mathbb{E} \left\{ z_{j,t}^{\phi-1} \right\}, \text{ where } \overline{p} \equiv \left(\frac{\alpha(\phi - 1)/\phi}{\operatorname{MPK}_t} \right)^{\frac{1-\alpha}{\alpha(1-\phi)}} \mathbb{E} \left\{ z_{j,t}^{\phi-1} \right\}^{\frac{1}{\phi-1} \frac{1}{\alpha(1-\phi)}}.
\]
Rewriting (43),

\[k_{j,t} = \bar{k}_t \ell_t z_{j,t}^{\phi-1}, \quad \text{where} \quad \bar{k}_t \equiv \left(\frac{\alpha(\phi - 1)/\phi}{\text{MPK}_t} \mathbb{E} \left\{ z_{j,t}^{\phi-1} \right\} \right)^{\frac{1}{\phi - 1}}. \quad (46) \]

We obtain \(\ell_{j,t}, p_{j,t}, y_{j,t}, \) and \(k_{j,t} \) (12)--(14).

In order to compute \(d_{j,t} \), we first need to compute \(dk_{j,t} \).

4. We compute \(dk_{j,t} \) as follows. From (46),

\[dk_{j,t} = d(\bar{k}_t \ell_t z_{j,t}^{\phi-1}) = \frac{d\bar{k}_t}{dt} \ell_t z_{j,t}^{\phi-1} dt + \bar{k}_t \ell_t d \left(z_{j,t}^{\phi-1} \right). \]

Note that

\[d \left(z_{j,t}^{\phi-1} \right) = \left\{ (\phi - 1) \mu_z + (\phi - 1) ((\phi - 1) - 1) \frac{\sigma_z^2}{2} \right\} z_{j,t}^{\phi-1} dt + (\phi - 1) \sigma_z z_{j,t}^{\phi-1} dB_{j,t}. \]

Then,

\[dk_{j,t} = d(\bar{k}_t \ell_t z_{j,t}^{\phi-1}) = \frac{d\bar{k}_t}{dt} \ell_t z_{j,t}^{\phi-1} dt + \bar{k}_t \ell_t d \left(z_{j,t}^{\phi-1} \right) = k_{j,t} \left\{ \mu_{k,t} dt + (\phi - 1) \sigma_z dB_{j,t} \right\}. \]

Here,

\[\mu_{k,t} \equiv g - \frac{1}{1 - \alpha} \frac{dr_t}{dt} + (\phi - 1) \left\{ (\mu_z - g_z) + ((\phi - 1) - 1) \frac{\sigma_z^2}{2} \right\}. \]

\(g_z \) is the growth rate of \(\mathbb{E} \left\{ z_{j,t}^{\phi-1} \right\} \) and \(g = g_z/(1 - \alpha) \).

5. We obtain \(d_{j,t} \) (15) by substituting these results into the following relationship:

\[d_{j,t} = (p_{j,t} y_{j,t} - w_t \ell_{j,t} - \delta k_{j,t}) dt - dk_{j,t} \]
Then, $d_{j,t}dt$ is rewritten as follows:

$$d_{j,t}dt = \bar{d}_t \tilde{t}_t z_{j,t}^{\phi^{-1}} \, dt - \{(\phi - 1)\sigma_s dB_{j,t}\} \bar{t}_t \tilde{t}_t z_{j,t}^{\phi^{-1}},$$

where $\bar{d}_t \equiv (1 - (1 - \alpha)(\phi - 1)/\phi)py_t - (\delta + \mu_{k,t}) \bar{k}_t$.

We obtain $q_{j,t}$ (16) through the following steps.

6. By multiplying (6) by $e^{-\int_t^u r(s) \, ds}$ and integrating, we obtain

$$q_{j,t} = E_t \left[\int_t^\infty (1 - \tau^f + t) d_{j,u} e^{-\int_t^u r(s) \, ds} \, du \right] = \int_t^\infty (1 - \tau^f + t) e^{-\int_t^u r(s) \, ds} E_t[d_{j,u}] \, du.$$

7. $E_t[d_{j,u}]$ in the above equation is further computed as follows:

$$E_t[d_{j,u}] = \bar{d}_u \bar{t}_u E_t[z_{j,u}^{\phi^{-1}}]
= \bar{d}_t \bar{t}_t \frac{\bar{d}_u \bar{t}_u}{\bar{d}_t \bar{t}_t} \times \exp \left\{ \int_t^u \left[(\phi - 1)\mu_z + (\phi - 1)((\phi - 1) - 1) \frac{\sigma_z^2}{2} \right] ds \right\} \cdot z_{j,t}^{\phi^{-1}}
= \bar{d}_t \bar{t}_t z_{j,t}^{\phi^{-1}} \exp \left\{ \int_t^u \left[\frac{d\ln(\bar{d}_u \bar{t}_u)}{dt} + (\phi - 1)\mu_z + (\phi - 1)((\phi - 1) - 1) \frac{\sigma_z^2}{2} \right] ds \right\}
= \bar{d}_t \bar{t}_t z_{j,t}^{\phi^{-1}} \exp \left\{ \int_t^u \mu_{d,s} ds \right\},$$

where $\mu_{d,t} \equiv \frac{d\ln(\bar{d}_t \bar{t}_t)}{dt} + (\phi - 1)\left[\mu_z + ((\phi - 1) - 1) \frac{\sigma_z^2}{2} \right]$.

18The Ito process version of integration by parts

$$\int_t^T X_{j,s}dY_{j,s} = X_{j,T}Y_{j,T} - X_{j,t}Y_{j,t} - \int_t^T Y_{j,s}dX_{j,s} - \int_t^T dX_{j,s}dY_{j,s}$$

is used here. Define $\Delta_{t,u} \equiv e^{-\int_t^u r(s) \, ds}$. Then,

$$\int_t^\infty \Delta_{t,u} q_{j,u} = q_{j,u} \Delta_{t,u} |_t^\infty - \int_t^\infty q_{j,u}(-r_u^f) \Delta_{t,u} du.$$
Using this equation, we obtain (16):

\[q_{j,t} = \bar{q}_{t} \tilde{t}_{t} z_{j,t}^{\phi-1}, \quad \text{where} \quad \bar{q}_{t} \equiv (1 - \tau^{f} - t) \bar{d}_{t} \int_{t}^{\infty} \exp \left\{ - \int_{t}^{u} (r_{s}^{f} - \mu_{d,s}) ds \right\} du. \]

Using the above results, we show the following properties that are used in Appendix C.1.

1. The aggregate detrended dividend \(\tilde{D}_{t} \) is obtained by aggregating \(d_{j,t} dt \) (15) and detrending by \(e^{gt} \),

\[\tilde{D}_{t} = (1 - (1 - \alpha)(\phi - 1)/\phi) \bar{Y}_{t} - (\delta + \mu_{\bar{K}}) \bar{K}_{t} - \frac{d\bar{K}_{t}}{dt}, \]

where \(\mu_{\bar{K}} \equiv g + (\phi - 1) \{(\mu_{z} - g_{z}) + ((\phi - 1) - 1) \sigma_{z}^{2}/2\}. \) Here, we use the property

\[\frac{1}{1 - \alpha} \frac{d\bar{r}_{f}^{t}}{dt} = \frac{d\bar{K}_{t}}{dt} / \bar{K}_{t}. \]

2. Using the above relations, the return on a risky stock \(d_{j,t} + dq_{j,t} \) is rewritten as the function of aggregate variables and exogenous shocks.

First note that

\[dq_{j,t} = q_{j,t} \frac{d\ln(\bar{d}_{t} \tilde{t}_{t})}{dt} dt + q_{j,t} \frac{d(z_{j,t}^{\phi-1})}{z_{j,t}^{\phi-1}} dt + q_{j,t} (1 - (1 - \tau^{f} - t) \bar{d}_{t} \tilde{t}_{t} z_{j,t}^{\phi-1} + r_{t}^{f} q_{j,t}) dt + q_{j,t}(\phi - 1)\sigma_{z} dB_{j,t}. \]

Substituting \(d_{j,t} \) (15), \(q_{j,t} \) (16), and the above relation, the return on a risky stock \((1 - \tau^{e})d_{j,t} + dq_{j,t} \) / \(q_{j,t} \) is obtained:

\[\mu_{q,t} = \left\{ \left(\frac{1 - \tau^{e}}{(1 - \tau^{f} - t)} - 1 \right) \int_{t}^{\infty} \exp \left\{ - \int_{t}^{u} (r_{s}^{f} - \mu_{d,s}) ds \right\} du + r_{t}^{f} \right\}, \]

50
\[\sigma_{q,t} = (\phi - 1)\sigma_z \times \left\{ 1 - \left(\frac{1 - \tau^e}{(1 - \tau^f - \tau)} \right) \frac{\tilde{K}_t}{\tilde{D}_t} \int_t^\infty \exp \left\{ - \int_t^u (r_s^f - \mu_{d,s}) ds \right\} du \right\}, \]

Note that if \((r^f_t - \mu_{d,t})\) is constant as in the steady state, \(\int_t^\infty \exp \left\{ - \int_t^u (r_s^f - \mu_{d,s}) ds \right\} du = 1/(r^f - \mu_d)\) and

\[q_{j,t} = \frac{(1 - \tau^f - \tau)\tilde{d}_t \tilde{L}_t z_{j,t}^{\phi - 1}}{r^f - \mu_d}. \]

In order to compute the return on risky stocks from aggregate variables and exogenous shocks, we need to know the value of \(\int_t^\infty \exp \left\{ - \int_t^u (r_s^f - \mu_{d,s}) ds \right\} du\).

We calculate the value as follows. Integrating (16), we obtain

\[\int_t^\infty \exp \left\{ - \int_t^u (r_s^f - \mu_{d,s}) ds \right\} du = \frac{Q_t}{(1 - \tau^f - \tau)\tilde{d}_t L}. \]

B.3 Firm restructuring

This appendix explains the derivations of firm restructuring described in Section 3.2. Let \(\tilde{z}_{j,t}\) be the firm’s productivity level after a part of its assets are sold to restructuring firms, detrended by \(e^{q_{z,t}}\). Then, \(Q_{\text{restructuring},t+dt}\) can be written as follows:

\[Q_{\text{restructuring},t+dt} = N \tilde{q}_{t+dt} \tilde{d}_{t+dt} e^{q_{z,t}} \mathbb{E} \left\{ z^{\phi - 1}_{\min} - z^{\phi - 1}_{j,t+dt} \mid \tilde{z}_{j,t+dt} \leq \tilde{z}_{\min} \right\}. \]

Here, \(\mathbb{E} \left\{ z^{\phi - 1}_{\min} - z^{\phi - 1}_{j,t+dt} \mid \tilde{z}_{j,t+dt} \leq \tilde{z}_{\min} \right\}\) is the expectation of \(z^{\phi - 1}_{\min} - z^{\phi - 1}_{j,t+dt}\) conditional on \(\tilde{z}_{j,t+dt}\) being lower than \(\tilde{z}_{\min}\). Because the evolution of \(\tilde{z}_{j,t}\) follows (19) and the distribution follows (20),

\[\mathbb{E} \left\{ z^{\phi - 1}_{\min} - z^{\phi - 1}_{j,t+dt} \mid \tilde{z}_{j,t+dt} \leq \tilde{z}_{\min} \right\} = \int_{\ln \tilde{z}_{\min}}^\infty d(\ln \tilde{z}_{j,t}) \int_{-\infty}^{\ln \tilde{z}_{\min}} d(\ln \tilde{z}_{j,t+dt}) \left\{ z^{\phi - 1}_{\min} - z^{\phi - 1}_{j,t+dt} \right\} f_z(\ln \tilde{z}_{j,t}) f_z(\ln \tilde{z}_{j,t+dt} | \ln \tilde{z}_{j,t}) \]
\[
\begin{align*}
&= \int_{\ln \tilde{z}_{j,t}}^{\infty} d(\ln \tilde{z}_{j,t}) \int_{-\infty}^{\ln \tilde{z}_{min}} d(\ln \tilde{z}_{j,t+dt}) \\
&\quad \left(\tilde{z}_{min}^{\phi-1} - \tilde{z}_{j,t+dt}^{\phi-1} \right) F_0 e^{-\lambda \ln \tilde{z}_{j,t}} \\
&\quad \times \frac{1}{\sqrt{2\pi\sigma_z^2}} e^{-\frac{(\ln \tilde{z}_{j,t+dt} - (\ln \tilde{z}_{j,t} + \mu_z dt))^2}{2\sigma_z^2}} \\
&\quad \left(\phi - 1 \right) m(\phi - 1)
\end{align*}
\]

where \(\mu_z = \mu_z - g_z - \sigma_z^2/2 - m \), \(f_z(\ln \tilde{z}_{j,t+dt} | \ln \tilde{z}_{j,t}) \) is the distribution of \(\ln \tilde{z}_{j,t+dt} \) conditional on \(\ln \tilde{z}_{j,t} \) and follows a normal distribution, and \(f_z(\ln \tilde{z}_{j,t}) \) is the steady-state firm size distribution.

Under the setup, taking the limit as \(dt \) approaches zero from above, and by using L’Hopital’s rule, (17) becomes

\[
\mathbb{E}\left\{ \tilde{z}_{j,t}^{\phi-1} \right\} m(\phi - 1) = \lim_{dt \to 0} \mathbb{E}\left\{ \tilde{z}_{min}^{\phi-1} - \tilde{z}_{j,t+dt}^{\phi-1} \left| \tilde{z}_{j,t+dt} \leq \tilde{z}_{min} \right. \right\} \\
\quad \frac{d\mathbb{E}\left\{ \tilde{z}_{min}^{\phi-1} - \tilde{z}_{j,t+dt}^{\phi-1} \left| \tilde{z}_{j,t+dt} \leq \tilde{z}_{min} \right. \right\}}{dt} \bigg|_{t' \to 0}.
\]

\(d\mathbb{E}\left\{ \tilde{z}_{min}^{\phi-1} - \tilde{z}_{j,t+dt}^{\phi-1} \left| \tilde{z}_{j,t+dt} \leq \tilde{z}_{min} \right. \right\} /dt' \) can be further calculated as follows:

\[
\begin{align*}
&\int_{\ln \tilde{z}_{min}}^{\infty} d(\ln \tilde{z}_{j,t}) \int_{-\infty}^{\ln \tilde{z}_{min}} d(\ln \tilde{z}_{j,t+dt}) \\
&\quad \frac{d}{dt'} \left(\tilde{z}_{min}^{\phi-1} - \tilde{z}_{j,t+dt}^{\phi-1} \right) F_0 e^{-\lambda \ln \tilde{z}_{j,t}} \frac{1}{\sqrt{2\pi\sigma_z^2 t'}} e^{-\frac{(\ln \tilde{z}_{j,t+dt} - (\ln \tilde{z}_{j,t} + \mu_z dt))^2}{2\sigma_z^2}} \\
&\quad \left(\phi - 1 \right) m(\phi - 1)
\end{align*}
\]

where \(\text{Erfc}[.] \) is the complementary error function defined by \(\text{Erfc}[x] \equiv (2/\sqrt{\pi}) \int_{x}^{\infty} e^{-s^2} ds. \)
By combining these results and taking the limit, we obtain
\[
\frac{d\mathbb{E}\left\{ z_{j,t}^{\phi-1} - z_{j,t}^{\phi-1} \mid z_{j,t+t'} \leq \tilde{z}_{\min}\right\}}{dt'} \bigg|_{t' \to 0} = \frac{1}{4} F_0 e^{-(\lambda-(\phi-1))\ln \tilde{z}_{\min}(\phi - 1)\sigma_z^2}.
\]

Substituting this result into (47), we finally obtain
\[
m = (\lambda - (\phi - 1)) \frac{\sigma_z^2}{4}.
\]

C Details on aggregate dynamics

C.1 Derivations for aggregate dynamics

This appendix shows (24) and (25) in Section 4.1, that is,
\[
d\tilde{S}_t = \mu_{\tilde{S}}(\tilde{S}_t)dt, \quad \tilde{r}_t = f_t(\tilde{S}_t),
\]
where \(\tilde{S}_t \equiv S_t/e^{gt} = (\tilde{A}_{e,t}, \tilde{A}_{w,t}, \tilde{A}_{f,t}, \tilde{H}_t, \tilde{K}_t) \) and \(\tilde{r}_t \equiv (r^f_t, \mu_{q,t}, \sigma_{q,t}) \). These results are obtained through the following steps.

1. Given \(\tilde{K}_t \), from (14),
\[
r^f_t + \delta = MPK_t = \alpha(\phi - 1)/\phi \mathbb{E}\left\{ z_{j,t}^{\phi-1}\right\}^{1/\phi-1} / \left(\frac{\tilde{K}_t}{L} \right)^{1-\alpha}.
\]

2. From (4), \(\tilde{C}_t = (\beta + \nu)\tilde{A}_t \). \(\tilde{Q}_t = \tilde{A}_t - \tilde{H}_t \). Given MPK, \(\tilde{Y}_t = \bar{y}_t L/e^{gt} \) is pinned down. Then,
\[
\frac{d\tilde{K}_t}{dt} = \tilde{Y}_t - \delta \tilde{K}_t - \tilde{C}_t - t \left(1 - \frac{\tilde{A}_{e,t} x_{e,t}}{Q_t} \right) D_t - g \tilde{K}_t,
\]
\[
\frac{d\tilde{K}_t}{dt} = \tilde{Y}_t - (1 - (1 - \alpha)(\phi - 1)/\phi)\tilde{Y}_t - (\delta + \mu_{\tilde{K}})\tilde{K}_t - \tilde{D}_t - g \tilde{K}_t,
\]
where \(\mu_{\tilde{K}} \equiv g + (\phi - 1) \{(\mu_z - g_z) + ((\phi - 1) - 1)\sigma_z^2/2\} \) and \(x_{e,t} \) are jointly determined (see Appendix B.2 for the derivation of the latter
equation). Note that the expected return and volatility of a risky stock, \(\mu_{q,t} \) and \(\sigma_{q,t} \), are jointly determined (see Appendix B.2).

3. The assets of the three types of households evolve as follows:

\[
\frac{d \tilde{A}_{e,t}}{dt} = (\mu_{ae,t} - g) \tilde{A}_{e,t} + (\nu + p_f) N \tilde{H}_t / L - (\nu + p_f) \tilde{A}_{e,t},
\]

\[
\frac{d \tilde{A}_{w,t}}{dt} = (\mu_{aw,t} - g) \tilde{A}_{w,t} + (\nu L - (\nu + p_f) N) \tilde{H}_t / L - \nu \tilde{A}_{w,t},
\]

\[
\frac{d \tilde{A}_{f,t}}{dt} = (\mu_{af,t} - g) \tilde{A}_{f,t} + p_f \tilde{A}_{e,t} - \nu \tilde{A}_{f,t},
\]

where \(\mu_{ae,t} \) and \(\mu_{aw,t} \) are the \(\mu \)s of an entrepreneur and a worker, respectively. The human asset evolves as

\[
\frac{d \tilde{H}_t}{dt} = - (\tilde{w}_t + \tilde{r}_t) L + (\nu + r^f_t - g) \tilde{H}_t, \tag{48}
\]

where

\[
\tilde{w}_t = (1 - \alpha)(\phi - 1) / \phi \tilde{Y}_t / L,
\]

\[
\tilde{r}_t = \left\{ \frac{\tilde{A}_{e,t} x_{e,t}}{Q_t} + \left(1 - \frac{\tilde{A}_{e,t} x_{e,t}}{Q_t} \right) r^f \right\} \tilde{D}_t / L.
\]

C.2 Shooting algorithm

The initial values of aggregate total and human assets, \(\tilde{A}_{1975} \) and \(\tilde{H}_{1975} \), are determined by using the shooting algorithm through the following steps:

1. Set \(\tilde{A}_{1975} \). Also set the upper and lower bounds of \(\tilde{A}_t \), \(\tilde{A}_H \), and \(\tilde{A}_L \).

 (a) Set \(\tilde{H}_{1975} \) and compute the dynamics of aggregate variables as explained in Section 4.1. Stop the computation if \(\tilde{A}_t \) hits the upper or lower bound, \(\tilde{A}_H \) or \(\tilde{A}_L \).

 (b) Update \(\tilde{H}_{1975} \) by solving (48) backward, with the terminal condition \(\tilde{H}_T = (((1 - \alpha)(\phi - 1)/\phi \tilde{y}^* + \tilde{r}^*)/(\nu + r^{f*} - g) \), where the
variables with asterisks are those in the post-1975 steady state and
\[T = \arg \min_t \sqrt{(\bar{K}_t - \bar{K}^*)^2 + (\bar{C}_t - \bar{C}^*)^2}. \]

(c) Repeat (a) and (b) until \(|\bar{H}^\text{new}_{1975} - \bar{H}^\text{old}_{1975}| < \varepsilon\).

2. Repeat the procedure and find the initial value \(\bar{A}_{1975} \) under which the
sequence of \(\{\bar{K}_t, \bar{C}_t\}_t \) converges to the post-1975 steady state.\(^{19}\)

Note that since \(\bar{C}_t = v\bar{A}_t \), the above procedure is similar to the shooting
algorithm used in standard growth models. In computing the variables used
below, we assume that after time \(T^* \), when the dynamics of \(K_t \) and \(C_t \) are
the closest to the post-1975 steady state, the economy switches to that steady
state.

D Derivations of household asset distributions
in the steady state

This appendix shows the derivations of household asset distributions described
in Section 5.

D.1 Asset distribution of entrepreneurs

The discussion in Section 5.1 indicates that the probability density function
of entrepreneurs at age \(t' \) with a detrended log total asset level of \(\ln \bar{a}_i \) is

\[f_e(\ln \bar{a}_i|t') = \frac{1}{\sqrt{2\pi \sigma^2_{ae} t'}} \exp \left(-\frac{(\ln \bar{a}_i - (\ln \bar{h} + (\mu_{ae} - g - \sigma^2_{ae}/2)t'))^2}{2\sigma^2_{ae} t'} \right). \]

The probability density of entrepreneurs whose age is \(t' \) is

\[f_e(t') = \frac{(\nu + p_f)N}{L} \exp \left(-((\nu + p_f)t') \right). \]

\(^{19}\)More specifically, we choose the sequence of \(\{\bar{K}_t, \bar{C}_t\}_t \) whose distance is closest to the
post-1975 steady state values, \((\bar{K}^*, \bar{C}^*) \).
By combining them, we can calculate the probability density function of the entrepreneurs’ asset distribution, \(f_e(\ln \tilde{a}_i) \), by

\[
f_e(\ln \tilde{a}_i) = \int_0^\infty dt' f_e(t') f_e(\ln \tilde{a}_i | t').
\]

To derive \(f_e(\ln \tilde{a}_i) \) in Section 5.1, we apply the following formula to the above equation:

\[
\int_0^\infty \exp(-at - b^2/t) \sqrt{t} dt = \sqrt{\pi/a} \exp(-2|b|\sqrt{a}), \quad \text{for } a > 0.
\]

D.2 Asset distribution of innate workers

We calculate the asset distribution of innate workers as follows:

\[
f_w(\ln \tilde{a}_i) = f_w(t') f_w(\ln \tilde{a}_i | t') \left| \frac{dt'}{d\ln \tilde{a}_i} \right|
\]

\[
= \frac{\nu L - (\nu + p_f)N}{L} \exp(-\nu t') \cdot \mathbf{1}(\ln \tilde{a}_i = \ln \tilde{h} + (\mu_{a\ell} - g)t') \cdot \frac{1}{|\mu_{a\ell} - g|}
\]

\[
= \begin{cases} \frac{\nu L - (\nu + p_f)N}{L} \mathbf{1}(\ln \tilde{a}_i = \ln \tilde{h} + (\mu_{a\ell} - g)t') \exp \left(-\frac{\nu}{\mu_{a\ell} - g}(\ln \tilde{a}_i - \ln \tilde{h}) \right) & \text{if } \frac{\ln \tilde{a}_i - \ln \tilde{h}}{\mu_{a\ell} - g} \geq 0, \\ 0 & \text{otherwise}. \end{cases}
\]

Note that \(\mathbf{1}(\ln \tilde{a}_i = \ln \tilde{h} + (\mu_{a\ell} - g)t') \) is a unit function that takes 1 if \(\ln \tilde{a}_i = \ln \tilde{h} + (\mu_{a\ell} - g)t' \) and 0 otherwise.

D.3 Asset distribution of former entrepreneurs

We derive the asset distribution of former entrepreneurs as follows. Let \(t'_m \equiv (\ln \tilde{a}_i - \ln \tilde{h})/(\mu_{a\ell} - g) \). First, we consider the case where \(\mu_{a\ell} \geq g \). If \(\ln \tilde{a}_i \geq \ln \tilde{h} \), then

\[
f_f(\ln \tilde{a}_i) = \int_0^{t'_m} dt' p_f f_{\ell 1}(\ln \tilde{a}_i - (\mu_{a\ell} - g)t') \exp(-\nu t')
\]

\[
+ \int_{t'_m}^\infty dt' p_f f_{\ell 2}(\ln \tilde{a}_i - (\mu_{a\ell} - g)t') \exp(-\nu t')
\]

\[56\]
\[
= \left[\frac{-p_f}{\nu - \psi_1(\mu_a - g)} f_{e1}(\ln \tilde{a}_i - (\mu_a - g)t') \times \exp(-\nu t') \right]_{t_m}^{t_m'} + \left[\frac{-p_f}{\nu + \psi_2(\mu_a - g)} f_{e2}(\ln \tilde{a}_i - (\mu_a - g)t') \times \exp(-\nu t') \right]_{t_m'}^\infty \\
= \frac{p_f}{\nu - \psi_1(\mu_a - g)} \{ -f_{e1}(\ln \tilde{a}_i - (\mu_a - g)t_m') \times \exp(-\nu t_m') + f_{e1}(\ln \tilde{a}_i) \} + \frac{p_f}{\nu + \psi_2(\mu_a - g)} \{ -0 + f_{e2}(\ln \tilde{a}_i - (\mu_a - g)t_m') \times \exp(-\nu t_m') \}.
\]

By substituting the following relations into the above equation, \(\ln \tilde{a}_i - (\mu_a - g)t_m' = \ln \tilde{h} \), \(f_{e1}(\ln \tilde{h}) = f_{e2}(\ln \tilde{h}) \), and \(t_m' = (\ln \tilde{a}_i - (\mu_a - g)/(\mu_a - g) \), we obtain,

\[
f_f(\ln \tilde{a}_i) = \frac{p_f}{\nu - \psi_1(\mu_a - g)} f_{e1}(\ln \tilde{a}_i) - \frac{1}{\nu - \psi_1(\mu_a - g)} - \frac{1}{\nu + \psi_2(\mu_a - g)} \) \times \exp \left(-\frac{\nu}{\mu_a - g} (\ln \tilde{a}_i - \ln \tilde{h}) \right).
\]

If \(\ln \tilde{a}_i < \ln \tilde{h} \),

\[
f_f(\ln \tilde{a}_i) = \int_0^\infty dt' p_f f_{e2}(\ln \tilde{a}_i - (\mu_a - g)t') \times \exp(-\nu t') = \frac{p_f}{\nu + \psi_2(\mu_a - g)} f_{e2}(\ln \tilde{a}_i).
\]

Next, we consider the case where \(\mu_a < g \). If \(\ln \tilde{a}_i \geq \ln \tilde{h} \), then

\[
f_f(\ln \tilde{a}_i) = \int_0^\infty dt' p_f f_{e1}(\ln \tilde{a}_i - (\mu_a - g)t') \times \exp(-\nu t') = \frac{p_f}{\nu - \psi_1(\mu_a - g)} f_{e1}(\ln \tilde{a}_i).
\]

If \(\ln \tilde{a}_i < \ln \tilde{h} \),

\[
f_f(\ln \tilde{a}_i) = \int_0^{t_m} dt' p_f f_{e2}(\ln \tilde{a}_i - (\mu_a - g)t') \times \exp(-\nu t')
\]
\[+ \int_{\nu_m}^{\infty} dt p_f f_{e1}(\ln \tilde{a}_i - (\mu_{a\ell} - g)t') \times \exp(-\nu t') \]
\[= \frac{p_f}{\nu + \psi_2(\mu_{a\ell} - g)} f_{e2}(\ln \tilde{a}_i) \]
\[- \left(\frac{1}{\nu + \psi_2(\mu_{a\ell} - g)} - \frac{1}{\nu - \psi_1(\mu_{a\ell} - g)} \right) p_f f_{e1}(\ln \tilde{h}) \]
\[\times \exp \left(-\frac{\nu}{\mu_{a\ell} - g} (\ln \tilde{a}_i - \ln \tilde{h}) \right). \]

E Details on welfare analysis

In this appendix, we calculate the ex ante utilities of an entrepreneur and a worker in the steady state, which were used in Section 6.5.3. The value function is written as follows:

\[V^i(a_i, S) = B^i \ln a_i + H^i(S), \quad (49) \]

We then derive the utility (value function) of a worker \(V^w(a_i, S) \). By substituting (3) and (4) into (29) and rearranging, we obtain \(H^w(S) \) in (49) in the steady state as follows:

\[H^w(S) = \frac{1}{\beta + \nu} \ln(\beta + \nu) + \frac{r_f - \beta}{\beta + \nu}. \]

By using this equation, the value function of a worker in the steady state, whose total asset is \(a_i \), can be calculated by

\[V^w(a_i, S) = \frac{\ln a_i}{\beta + \nu} + H^w(S). \]

Next, using the above results, we derive the utility (value function) of an entrepreneur. From (29), we obtain \(H^e(S) \) in (49) in the steady state as follows:

\[H^e(S) = \frac{1}{\beta + \nu + p_f} \left[p_f H^w(S) + \ln(\beta + \nu) + \frac{r_f - \beta + (\mu q - r_f)x_e/2}{\beta + \nu} \right]. \]
The value function of an entrepreneur in the steady state, whose total asset is a_i, can be calculated by

$$V^e(a_i, S) = \frac{\ln a_i}{\beta + \nu} + H^e(S).$$

Section 6.5.3 calculates the detrended utility level defined by

$$V^i(\tilde{h}, S) = \frac{\ln \tilde{h}}{\beta + \nu} + H^i(S).$$